A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska
详细信息    查看全文
  • 作者:Guoquan Wang ; Yan Bao ; Yanet Cuddus ; Xueyi Jia ; John Serna Jr. ; Qi Jing
  • 关键词:Cold region ; GPS ; Landslide ; Monitoring ; Seasonal ground movement ; Tectonically active region
  • 刊名:Natural Hazards
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:77
  • 期:3
  • 页码:1939-1961
  • 全文大小:4,140 KB
  • 参考文献:Abolmasov B, Milenkovi? S, Jelisavac B, Peji? M, Radi? Z (2015) The analysis of landslide dynamics based on automated GNSS monitoring—a case study. In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing Switzerland, pp 143-46
    Akbar TA, Ha SR (2011) Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—by integration of GPS, GIS, and remote sensing technology. Landslides 8:527-40. doi:10.-007/?s10346-011-0260-1 View Article
    Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019-035. doi:10.-029/-7JB03534 View Article
    Bellone T, Dabove P, Manzino AM, Taglioretti C (2014) Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomat Nat Hazards Risk. doi:10.-080/-9475705.-014.-66867
    Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84:327-37. doi:10.-007/?s00190-010-0371-9 View Article
    Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R Jr, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32:L16308. doi:10.-029/-005GL023491 View Article
    Bilich A, Larson KM (2007) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42:RS6003. doi:10.-029/-007RS003652 View Article
    Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187-0203View Article
    Blewitt G, Heflin MB, Webb FH, Lindqwister UJ, Malla RP (1992) Global Coordinates with centimeter accuracy in the International Terrestrial Reference frame using GPS. Geophys Res Lett 19(9):853-56View Article
    Blewitt G, Lavallee D D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294:2342-345. doi:10.-126/?science.-065328 View Article
    Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.-029/-005GL025546 View Article
    Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149-59View Article
    Chen G, Herring TH (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489-0502View Article
    Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Eng Geol 68(1-):67-01View Article
    Cohen SC, Freymueller JT (1997) Deformation of the Kenai Peninsula, Alaska. J Geophys Res 102:20479-0487View Article
    Cohen SC, Freymueller JT (2004) Crustal deformation in Southcentral Alaska: The 1964 Prince William Sound earthquake subduction zone. Adv Geophys 47:1-3
    Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern
    Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949-966. doi:10.-029/?JB094iB04p03949 View Article
    Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean, and surface ground water. Geophys Res Lett 24:1867-870View Article
    Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075. doi:10.-029/-001JB000573 View Article
    Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191-98View Article
    Eberhart-Phillips D, Haeussler PJ, Freymueller JT, Frankel AD, Rubin CM, Craw P, Greg Anderson NA, Carver GA, Crone AJ, Dawson TE, Fletcher H, Hansen R, Harp EL, Harris RA, Hill DP, Hreinsdóttir S, Jibson RW, Jones LM, Kayen R, Keefer DK, Larsen CF, Moran SC, Personius SF, Plafker G, Sherrod B, Sieh K, Sitar N, Wallace WK (2003) The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300(5622):1113-118. doi:10.-126/?science.-082703 View Article
    Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geodesy 75(12):633-40View Article
    Freymueller JT (2009) Seasonal Position variations and regional reference frame realization. In: Drewes H (ed) Geodetic reference frames: IAG symposium Munich, Ger
  • 作者单位:Guoquan Wang (1)
    Yan Bao (2)
    Yanet Cuddus (1)
    Xueyi Jia (1)
    John Serna Jr. (1)
    Qi Jing (3)

    1. Department of Earth and Atmospheric Science, National Center for Airborne Laser Mapping (NCALM), University of Houston, Houston, TX, 77004, USA
    2. College of Civil Engineering and Architecture, Beijing University of Technology, Beijing, 100124, China
    3. First Monitoring Center, China Earthquake Administration, Tianjin, 300180, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
Over the past 15?years, Global Positioning System (GPS) technology has been frequently used as a tool to detect potential earth mass movements and to track creeping landslides. In this study, we investigated 4?years of continuous GPS data (September 2006–July 2010) recorded at a landslide site in Alaska. This GPS station (AC55) was installed on an un-identified creeping site by the Plate Boundary Observatory (PBO) project, which was funded by the US National Science Foundation. The landslide moves with a steady horizontal velocity of 5.5?cm/year toward NEE 15° and experiences a steady subsidence of 2.6?cm/year. There is a considerable correlation between annual snow loading and melting cycles and seasonal variations in the landslide displacements. The seasonal movements vary year to year with an average peak-to-trough amplitude of 1.5 and 1.0?cm in vertical and horizontal directions, respectively. This study addresses three challenging issues in applying GPS for landslide monitoring in tectonically active and cold regions. The three challenges include (1) detecting GPS-derived positions that could be contaminated by the snow and ice accumulated on GPS antennas during cold seasons, (2) establishing a stable local reference frame and assessing its accuracy, and (3) excluding local seasonal ground motions from GPS-derived landslide displacement time series. The methods introduced in this study will be useful for GPS landslide monitoring in other tectonically active and/or cold regions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700