Investigation of Geomorphic and Seismic Effects on the 1959 Madison Canyon, Montana, Landslide Using an Integrated Field, Engineering Geomorphology Mapping, and Numerical Modelling Approach
详细信息    查看全文
  • 作者:A. Wolter ; V. Gischig ; D. Stead ; J. J. Clague
  • 刊名:Rock Mechanics and Rock Engineering
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:49
  • 期:6
  • 页码:2479-2501
  • 全文大小:9,411 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Civil Engineering
  • 出版者:Springer Wien
  • ISSN:1434-453X
  • 卷排序:49
文摘
We present an integrated approach to investigate the seismically triggered Madison Canyon landslide (volume = 20 Mm3), which killed 26 people in Montana, USA, in 1959. We created engineering geomorphological maps and conducted field surveys, long-range terrestrial digital photogrammetry, and preliminary 2D numerical modelling with the objective of determining the conditioning factors, mechanisms, movement behaviour, and evolution of the failure. We emphasise the importance of both endogenic (i.e. seismic) and exogenic (i.e. geomorphic) processes in conditioning the slope for failure and hypothesise a sequence of events based on the morphology of the deposit and seismic modelling. A section of the slope was slowly deforming before a magnitude-7.5 earthquake with an epicentre 30 km away triggered the catastrophic failure in August 1959. The failed rock mass rapidly fragmented as it descended the slope towards Madison River. Part of the mass remained relatively intact as it moved on a layer of pulverised debris. The main slide was followed by several debris slides, slumps, and rockfalls. The slide debris was extensively modified soon after the disaster by the US Army Corps of Engineers to provide a stable outflow channel from newly formed Earthquake Lake. Our modelling and observations show that the landslide occurred as a result of long-term damage of the slope induced by fluvial undercutting, erosion, weathering, and past seismicity, and due to the short-term triggering effect of the 1959 earthquake. Static models suggest the slope was stable prior to the 1959 earthquake; failure would have required a significant reduction in material strength. Preliminary dynamic models indicate that repeated seismic loading was a critical process for catastrophic failure. Although the ridge geometry and existing tension cracks in the initiation zone amplified ground motions, the most important factors in initiating failure were pre-existing discontinuities and seismically induced damage. Amplification played a secondary role.KeywordsMadison Canyon landslideEngineering geomorphology mappingEndogenic and exogenic processesDynamic modelling in UDECTopographic and damage amplificationSeismic fatigue

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700