Signal Reconstruction from Frame and Sampling Erasures
详细信息    查看全文
  • 作者:David Larson ; Sam Scholze
  • 关键词:Finite frame ; Omission ; Erasure ; Reconstruction ; Bridging ; 46G10 ; 46L07 ; 46L10 ; 46L51 ; 47A20 ; 42C15 ; 46B15 ; 46B25 ; 47B48
  • 刊名:Journal of Fourier Analysis and Applications
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 页码:1146-1167
  • 全文大小:666 KB
  • 参考文献:1.Alexeev, B., Cahill, J., Mixon, D.: Full spark frames. J. Fourier Anal. Appl., 18(6) 1167鈥?194 (2012)
    2.Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem. IEEE Signal Process. Lett. 14(5), 341鈥?43 (2007)CrossRef
    3.Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Frames for linear reconstruction without phase. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems, pp. 721鈥?26 (2008)
    4.Benedetto, J., Ferriera, P.J.S.G. (eds.): Modern Sampling Theory. Birkh盲user, Boston, MA (2001)
    5.Bodmann, B.G., Paulsen, V.I.: Frames graphs and erasures. Linear Algebra Appl. 404, 118鈥?46 (2005)MathSciNet CrossRef
    6.Bodmann, B.G., Le, M., Reza, L., Tobin, M., Tomforde, M.: Frame theory for binary vector spaces. Involve 2(5), 589鈥?02 (2009)MathSciNet CrossRef
    7.Boufounos, P., Oppenheim, A.V., Goyal, V.K.: Causal compensation for erasures in frame representations. IEEE Trans. Signal Process. 56(3), 1071鈥?082 (2008)MathSciNet CrossRef
    8.Cahill, J., Mixon, D.G., Strawn, N.: Connectivity and Irreducibility of Algebraic Varieties of Finite Unit Norm Tight Frames (2013). arXiv:鈥?311.鈥?748
    9.Casazza, P.G., Kutyniok, G.: Robustness of fusion frames under erasures of subspaces and of local frame vectors. Contemp. Math. 464, 149鈥?60 (2008)MathSciNet CrossRef
    10.Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Application. Applied and Numerical Harmonic Analysis. Birkh盲user, Basel (2014)
    11.Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114鈥?32 (2008)MathSciNet CrossRef
    12.Casazza, P.G., Kova膷evi膰, J.: Equal-norm tight frames with erasures. Adv. Comp. Math. 18, 387鈥?30 (2003)CrossRef
    13.Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX). Contemp. Math. 247(1999), 149鈥?82 (1999)MathSciNet CrossRef
    14.Casazza, P.G., Lynch, R.G., Tremain, J.C., Woodland, L.M.: Integer Frames, Houston J. Math. (2013). arXiv:鈥?307.鈥?328
    15.Christensen, O.: An Introduction to Frames and Riesz Bases. Birkh盲user, Basel (2003)CrossRef
    16.Dai, X., Larson, D.R.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Am. Math. Soc. 134 (1998)
    17.Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341鈥?66 (1952)MathSciNet CrossRef
    18.Goyal, V.K., Kova膷evi膰, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comp. Harm. Anal. 10, 203鈥?33 (2001)CrossRef
    19.Gr枚chenig, K.: Foundations of Time Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkh盲user, Boston (2001)CrossRef
    20.Han, D.: Frame representations and parseval duals with applications to Gabor frames. Trans. Am. Math. Soc. 360, 3307鈥?326 (2008)CrossRef
    21.Han, D., Larson, D.R.: Frames, Bases and Group Representations. Memoirs American Mathematical Society, Providence (2000)
    22.Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. American Mathematical Society Student Mathematical Library, vol. 40. AMS, Providence (2007)
    23.Holmes, R., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31鈥?1 (2004)MathSciNet CrossRef
    24.Hotovy, R., Larson, D.R., Scholze, S.: Binary frames, Houston. J. Math (to appear)
    25.Kaftal, V., Larson, D.R., Zhang, S.: Operator valued frames. Trans. Am. Math. Soc. 361, 6349鈥?385 (2009)MathSciNet CrossRef
    26.Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56(6), 2334鈥?345 (2008)MathSciNet CrossRef
    27.Pehlivan, S., Han, D., Mohapatra, R.: Linearly connected sequences and spectrally optimal dual frames for erasures. J. Funct. Anal. 265(11), 2855鈥?876 (2013)MathSciNet CrossRef
    28.Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 232, 437鈥?52 (2006)CrossRef
    29.Zayed, A.I.: Advances in Shannon鈥檚 Sampling Theory. CRC Press, Boca Raton (1993)
  • 作者单位:David Larson (1)
    Sam Scholze (1)

    1. Department of Mathematics, Texas A&M University, College Station, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Fourier Analysis
    Abstract Harmonic Analysis
    Approximations and Expansions
    Partial Differential Equations
    Applications of Mathematics
    Signal,Image and Speech Processing
  • 出版者:Birkh盲user Boston
  • ISSN:1531-5851
文摘
We give some new methods for perfect reconstruction from frame and sampling erasures in a small number of steps. By bridging an erasure set we mean replacing the erased Fourier coefficients of a function with respect to a frame by appropriate linear combinations of the non-erased coefficients. We prove that if a minimal redundancy condition is satisfied bridging can always be done to make the reduced error operator nilpotent of index 2 using a bridge set of indices no larger than the cardinality of the erasure set. This results in perfect reconstruction of the erased coefficients. We also obtain a new formula for the inverse of an invertible partial reconstruction operator. This leads to a second method of perfect reconstruction from frame and sampling erasures in a small number of steps. This gives an alternative to the bridging method for many (but not all) cases. The methods we use employ matrix techniques only of the order of the cardinality of the erasure set, and are applicable to rather large finite erasure sets for infinite frames and sampling schemes as well as for finite frame theory. These methods are usually more efficient than inverting the frame operator for the remaining coefficients because the size of the erasure set is usually much smaller than the dimension of the underlying Hilbert space. Some new classification theorems for frames are obtained and some new methods of measuring redundancy are introduced based on our bridging theory. Keywords Finite frame Omission Erasure Reconstruction Bridging

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700