Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
详细信息    查看全文
  • 作者:A. G. Afonin ; V. G. Butov ; V. P. Panchenko…
  • 关键词:magnetohydrodynamic generator ; multirail launcher ; cyclic load ; mathematical model ; simultaneous calculation ; supersonic shock ; free flow ; current–voltage characteristic ; hysteresis
  • 刊名:Journal of Applied Mechanics and Technical Physics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:56
  • 期:5
  • 页码:813-822
  • 全文大小:363 KB
  • 参考文献:1.H. D. Fair, “The Past, Present and Future of Electromagnetics Launch Technology and the IEEE International EML Symposia,” IEEE Trans. Plasma Sci. 41 (5), 1024–1027 (2013).CrossRef ADS
    2.I. R. McNab, “Large-Scale Pulsed Power Opportunities and Challenges,” IEEE Trans. Plasma Sci. 42 (5), 1118–1127 (2014).CrossRef ADS
    3.G. A. Shvetsov, V. M. Titov, Yu. A. Bashkatov, et al., “Investigation of a Railgun for Acceleration of Solid Particles Fed by an Explosive MHD-Generator,” in Ultrahigh Magnetic Fields. Physics. Equipment. Application, Proc. 3rd Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, 13–17 June, 1983 (Nauka, Moscow, 1984), pp. 177–182.
    4.Harada Nob, “Space Application of Non-Equilibrium MHD Generator,” in Proc. of the 2nd Int. Workshop on Magnetoplasma Aerodynamics in Aerospace Applications, Moscow, 5–7 April, 2000 (Inst. High Temperatures, Russian Acad. of Sci., 2000), pp. 325–329.
    5.R. L. Ellis, J. C. Poynor, B. T. McGlasson, A. N. Smith, “Influence of Bore and Rail Geometry on an Electromagnetic Naval Railgun System,” IEEE Trans. Magn. 41 (1), 182–187 (2005).CrossRef ADS
    6.Zizhou Su, Tao Zhang, Honghai Zhang, et al., “Desing and Simulation of a Large Muzzle Kinetic Energy Railgun,” IEEE Trans. Plasma Sci. 41 (5), 1416–1420 (2013).CrossRef ADS
    7.S. V. Sinyaev, V. V. Burkin, and E. Yu. Pimonov, “Ways to Develop a Rapid Fire Electrodynamic Launcher: Results of Experimental and Theoretical Studies,” in Modern Methods of Designing and Testing Rocket and Missile Artillery Ordnance: Proc. Scientific Conf. of the Volga Region RARAN Center [Inst. of Experimental. Physics (VNIIEF), Sarov, 2000], pp. 507–512.
    8.M. Schneider, M. Wötzel, and W. Wenning, “The ISL Rapid Fire Railgun Project RAFIR A. Pt 2. First Results,” IEEE Trans. Magn. 45 (1), 448–452 (2009).CrossRef ADS
    9.Ch. Schupper, F. Alonahabi, and M. Schneider, “Electromechanical Aspects of Reliable Loading Procedures for Multishot Railguns,” IEEE Trans. Plasma Sci. 41 (5), 1387–1391 (2013).CrossRef ADS
    10.G. Vincent and St. Hundertmark, “Using the Hexagonal Segmented Railgun in Multishot Mode with Three Projectiles,” IEEE Trans. Plasma Sci. 41 (5), 1431–1435 (2013).CrossRef ADS
    11.J. Gallant, T. Vancaeyzeele, B. Luawens, et al., “Design Consideration for an Electromagnetic Railgun Firing Intelligent Bursts to be Used Against Anti-Ship Missiles,” IEEE Trans. Plasma Sci. 43 (5), 1179–1184 (2015).CrossRef ADS
    12.T. Mehlhorn, “National Security Research in Plasma Physics and Pulsed Power: Past, Present and Future,” IEEE Trans. Plasma Sci. 42 (5), 1088–1117 (2014).CrossRef ADS
    13.Annual Report. Naval Research Laboratory. Plasma Physics Division (2013), pp. 1–80; wwwppdnrlnavymil.
    14.R. J. Rosa, Magnetohydrodynamic Energy Conversion (McGraw Hill, 1963).
    15.E. P. Velikhov, O. G. Matveenko, V. P. Panchenko, et al., “Solid Propellant Fueled Sakhalin Pulsed MHD Generator with an Electrical Power of 500 MW,” Dokl. Ross. Akad. Nauk 370, 617–622 (2000).
    16.E. P. Velikhov, V. D. Pismenny, O. G. Matveenko, et al., “Pulsed MHD Power System Sakhalin—The World Largest Solid Propellant Fueled MHD Generator of 500 MWe Electric Power Output,” in Proc. of the 13th Intern. Conf. on Magnetohydrodynamics Power Generation and High Temperature Technologies, Beijing (China), 12–15 Oct., 1999 (Beijing, 1999), Vol. 2, pp. 387–398.
    17.Y. Y. Babakov, A. V. Plekhanov, and V. B. Zheleznyi, “Range and Railgun Development Results at LS&PA “SOYUZ,” IEEE Trans. Magn. 31 (1), 259–263 (1995).CrossRef ADS
    18.D. A. Fulghum, “Russian Power Design to Drive US Weapons,” Aviat. Week Space Technol (April 10, 1995), p. 54.
    19.V. M. Batenin, V. A. Biturin, G. S. Ivanov, et al., “Advanced Reusable Space Transportation System with Horizontal Launch of Air-Space Plane,” in Proc. of the 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, 5–7 April, 2000 (Inst. High Temp., Russian Acad. of Sci., 2000), pp. 318–325.
    20.V. V. Breev, A. V. Gubarev, and V. P. Panchenko, Supersonic MHD Generators (Energoatomizdat, Moscow, 1988) [in Russian].
    21.A. E. Poltanov, A. K. Kondratenko, A. P. Glinov, and V. N. Ryndin, “Multi-Turn Railguns: The Concept Analysis and Experiments,” IEEE Trans. Magn. 37 (1), 457–461 (2001).CrossRef ADS
    22.V. G. Butov, V. M. Galkin, V. M. Golovizin, et al., “Numerical Simulation of Dimensional Two-Phase Flows in Supersonic MHD Generators,” Preprint No. 5276/16 (Kurchatov Institute of Atomic Energy, Moscow, 1990) [in Russian].
    23.V. P. Panchenko, “Preliminary Analysis of the Sakhalin World Largest Pulsed MHD Generator,” in Proc. of the 4th Int. Workshop on Magnetoplasma Aerodynamics in Aerospace Applications, Moscow, April 9–11, 2002 (Inst. High Temp., Russian Acad. of Sci., 2002), pp. 322–331.
    24.H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam–London, 1970).
    25.S. V. Sinyaev, “Method for Calculating the Power and Electromagnetic Parameters of Complex Systems of Conductors in Problems of Electrodynamics,” in Proc. 3rd Sib. Congress on Industrial and Applied Mathematics, Novosibirsk, 22–27 June, 1998 (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1998), Part 3, p. 40.
    26.R. T. Honjo and R. M. Del Vechio, “A Program to Compute Magnetic Fields and Inductances Due to Solid Rectangular Conductors Arbitrarily Positioned in Space,” IEEE Trans. Magn. 22 (5), 1532–1535 (1986).CrossRef ADS
  • 作者单位:A. G. Afonin (1)
    V. G. Butov (1)
    V. P. Panchenko (2)
    S. V. Sinyaev (1)
    V. A. Solonenko (1)
    G. A. Shvetsov (3)
    A. A. Yakushev (2)

    1. Institute of Applied Mathematics and Mechanics of Tomsk State University, Tomsk, 634050, Russia
    2. Troitsk Institute for Innovation and Fusion Research, Troitsk, 142190, Russia
    3. Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Fluids
    Mechanics, Fluids and Thermodynamics
    Applications of Mathematics
    Mathematical Modeling and IndustrialMathematics
    Mechanical Engineering
    Russian Library of Science
  • 出版者:Springer New York
  • ISSN:1573-8620
文摘
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode. Keywords magnetohydrodynamic generator multirail launcher cyclic load mathematical model simultaneous calculation supersonic shock-free flow current–voltage characteristic hysteresis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700