An overview of the RFCS project V&V framework: optimization-based and linear tools for worst-case search
详细信息    查看全文
  • 作者:A. Marcos ; P. Rosa ; C. Roux ; M. Bartolini ; S. Bennani
  • 关键词:Verification & Validation ; Worst ; case search ; LFT model ; μ ; analysis ; VEGA launcher
  • 刊名:CEAS Space Journal
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:7
  • 期:2
  • 页码:303-318
  • 全文大小:3,761 KB
  • 参考文献:1.Balas, G.J., Doyle, J.C., Glover, K., Packard, A., Smith, R.: \(\mu \) -analysis and synthesis toolbox. MUSYN Inc. and The MathWorks, Natick (1998)
    2.Bateman, A., Ward, D., Balas, G.: Robust/worst-case analysis and simulation tools. In: Proc. AIAA Guidance, Navigation, and Control Conference (2005)
    3.Belcastro, C.M., Belcastro, C.M.: On the validation of safety critical aircraft systems, part i: an overview of analytical & simulation methods. In: AIAA Guidance, Navigation and Control Conference, vol. 20. Austin, Texas (2003)
    4.Doyle, J., Packard, A., Zhou, K.: Review of LFTs, LMIs, and \(\mu \) . In: Decision and Control, 1991, Proceedings of the 30th IEEE Conference on, pp. 1227-232. IEEE (1991)
    5.Ferreres, G., Magni, J.F., Biannic, J.M.: Robustness analysis of flexible structures: practical algorithms. Int. J. Robust Nonlinear Control 13(8), 715-33 (2003)MATH MathSciNet View Article
    6.Fielding, C., Varga, A., Bennani, S., Selier, M.: Advanced techniques for clearance of flight control laws, vol. 283. Springer (2002)
    7.Hanson, J.M., Beard, B.B.: Applying monte carlo simulation to launch vehicle design and requirements verification. J. Spacecr. Rockets 49(1), 136-44 (2012)View Article
    8.Hansson, J.: Using Linear Fractional Transformations for Clearance of Flight Control Laws. MS Thesis, Linkoping University, Sweden (2003)
    9.Jacklin, S.A., Schumann, J.M., Gupta, P.P., Richard, R., Guenther, K., Soares, F.: Development of advanced verification and validation procedures and tools for the certification of learning systems in aerospace applications. In: Proceedings of Infotech Aerospace Conference. Arlington (2005)
    10.Lambrechts, P., Terlouw, J., Bennani, S., Steinbuch, M.: Parametric uncertainty modeling using LFTs. In: American Control Conference, pp. 267-72. IEEE (1993)
    11.Lawrence, C.T., Tits, A.L., Van Dooren, P.: A fast algorithm for the computation of an upper bound on the \(\mu \) -norm. Automatica 36(3), 449-56 (2000)MATH MathSciNet View Article
    12.Magni, J.F.: Linear fractional representation toolbox for use with matlab. http://?w3.?onera.?fr/?smac/- (2006)
    13.Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for aircraft. J. Guid. Control Dyn 27(2), 218-28 (2004)View Article
    14.Marcos, A., Bates, D.G., Postlethwaite, I.: A symbolic matrix decomposition algorithm for reduced order linear fractional transformation modelling. Automatica 43(7), 1211-218 (2007)MATH MathSciNet View Article
    15.Marcos, A., De Marina, H.G., Mantini, V., Roux, C., Bennani, S.: Optimization-based worst-case analysis of a launcher during the atmospheric ascent phase. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2013)
    16.Marcos, A., Mantini, V., Roux, C., Bennani, S.: Bridging the gap between linear and nonlinear worst-case analysis: An application case to the atmospheric phase of the vega launcher. IFAC Autom. Control Aerosp. Würzburg Ger. 19(1), 42-7 (2013)
    17.Marcos, A., Roux, C., Rotunno, M., Joos, H.D., Bennani, S., Penín, L.F., Caramagno, A.: The V&V problematic for launchers: current practice and potential advantages on the application of modern analysis techniques. In: ESA Guidance, Navigation and Control Conference, Karlovy Vary. Czech Republic (2011)
    18.Menon, P.P., Postlethwaite, I., Bennani, S., Marcos, A., Bates, D.: Robustness analysis of a reusable launch vehicle flight control law. Control Eng. Pract. 17(7), 751-65 (2009)View Article
    19.Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341-59 (1997)MATH MathSciNet View Article
  • 作者单位:A. Marcos (1) (2)
    P. Rosa (3)
    C. Roux (4)
    M. Bartolini (4)
    S. Bennani (5)

    1. Deimos Space S.L.U., Madrid, 28760, Spain
    2. Aerospace Engineering Department, University of Bristol, Bristol, BS8 1TR, UK
    3. Deimos Engenharia, 1998-023, Lisbon, Portugal
    4. ELV, 00034, Rome, Italy
    5. ESA_ESTEC, 2201AZ, Noordwijk, The Netherlands
  • 刊物类别:Engineering
  • 出版者:Springer Wien
  • ISSN:1868-2510
文摘
This article presents the application of nonlinear (simulation-based) and linear (structured singular value) worst-case tools to the VEGA launcher Verification and Validation process, during atmospheric ascent. The simulation-based worst-case evaluation is performed by minimizing a set of cost functions that capture the launcher’s performance objectives, using the Worst-Case Analysis Optimization Tool and a high-fidelity nonlinear simulator of VEGA. The linear worst-case search uses the structured singular value (\(\mu \)) and a linear fractional transformation model representing the yaw rigid motion of the VEGA launcher but numerically evaluated using time simulation data from the VEGA simulator. To facilitate the analysis of the worst-case results as well as the comparison between the two analysis tools, a selection of the most critical uncertainties is performed using sensitivity analysis based on selected nonlinear simulator time responses. It is highlighted that the presented analysis tools are complementary to traditional Monte Carlo approaches in that they strive to identify worst-case uncertainty combinations as opposed to providing probabilistic guarantees on performance metric satisfaction. In addition, as it will be shown, these approaches require only a fraction of the time required to perform a Monte Carlo campaign.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700