Automatic Counting and Classification of Bacterial Colonies Using Hyperspectral Imaging
详细信息    查看全文
  • 作者:Seung-Chul Yoon ; Kurt C. Lawrence ; Bosoon Park
  • 关键词:Hyperspectral imaging ; Colony segmentation ; Colony counting ; Colony detection ; Colony classification ; Non ; O157 STEC ; Pathogen detection ; Agar
  • 刊名:Food and Bioprocess Technology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:8
  • 期:10
  • 页码:2047-2065
  • 全文大小:5,302 KB
  • 参考文献:Abdi, H.,., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433鈥?59.CrossRef
    Aurenhammer, F. (1991). Voronoi diagrams鈥攁 survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345鈥?05.CrossRef
    Barber, C. B., Dobkin, D. ,. P., & Huhdanpaa, H. T. (1996). The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469鈥?83 http://鈥媤ww.鈥媞hull.鈥媜rg . Accessed 9 March 2015.CrossRef
    Brooks, J. T., Sowers, E. G., Wells, J. G., Greene, K. D., Griffin, P. M., Hoekstra, R. ,M., & Strockbine, N. A. (2005). Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983鈥?002. The Journal of Infectious Diseases, 192(8), 1422-1429.CrossRef
    Brugger, S. D., Baumberger, C., Jost, M., Jenni, W., Brugger, U., & M眉hlemann, K. (2012). Automated counting of bacterial colony forming units on agar plates. PloS One, 7(3), e33695. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?033695 .CrossRef
    Centers for Disease Control and Prevention (CDC). (2013). Trends in foodborne illness in the United States. http://鈥媤ww.鈥媍dc.鈥媑ov/鈥媐oodborneburden/鈥媡rends-in-foodborne-illness.鈥媓tml . Acscessed 9 March 2015.
    Chen, W. B.,., & Zhang, C. C. (2009). An automated bacterial colony counting and classification system. Information Systems Frontiers, 11(4), 349鈥?68.CrossRef
    Cheng, S.-W., Dey, T. ,. K., & Shewchuk, J. (2012). Delaunay mesh generation. Boca Raton, Florida:Chapman and Hall/CRC.
    Clarke, M. L., Burton, R. L., Hill, A. N., Litorja, M., Nahm, M. H., & Hwang, J. (2010). Low-cost, high-throughput, automated counting of bacterial colonies. Cytometry. Part A, 77(8), 790鈥?97.CrossRef
    Clemmensen, L. H., Hansen, M. E., Frisvad, J. C., & Ersb酶ll, B. K. (2007). A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging. Journal of Microbiological Methods, 69(2), 249鈥?55.CrossRef
    Corry, J. E., Jarvis, B., Passmore, S., & Hedges, A. (2007). A critical review of measurement uncertainty in the enumeration of food micro-organisms. Food Microbiology, 24(3), 230鈥?53.CrossRef
    Dahl, J. J., Hyun, D., Lediju, M., & Trahey, G. E. (2011). Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging. Ultrasonic Imaging, 33(2), 119鈥?33.CrossRef
    Dahle, J., Kakar, M., Steen, H. B., & Kaalhus, O. (2004). Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing. Cytometry. Part A, 60(2), 182鈥?88.CrossRef
    Dwivedi, H. P., & Jaykus, L. A. (2011). Detection of pathogens in foods: the current state-of-the-art and future directions. Critical Reviews in Microbiology, 37(1), 40鈥?3.CrossRef
    Fratamico, P. M., Bagi, L. K., Cray, W. C., Narang, N., Yan, X., Medina, M., & Liu, Y. (2011). Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathogens and Disease, 8(5), 601鈥?07.CrossRef
    Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. A. (2012). Blood vessel segmentation methodologies in retinal images - a survey. Computer Methods and Programs in Biomedicine, 108(1), 407鈥?33.
    Garry, E., Ouattara, G., Williams, P., & Pesta, M. (2009). Enumerating chromogenic agar plates using the color QCount automated colony counter. Journal of Rapid Methods and Automation in Microbiology, 17(1), 46鈥?4.CrossRef
    Geissmann, Q. (2013). OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PloS One, 8(2), e54072. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?054072 .CrossRef
    Genc, H. M., Cataltepe, Z., & Pearson, T. (2007). A new PCA/ICA based feature selection method. IEEE 15th Signal Processing and Communications Applications, doi: 10.1109/SIU.2007.4298772
    Hirleman, E. D., Guo, S., Bae, E., & Bhunia, A. K. (2008). System and method for rapid detection and characterization of bacteria colonies using forward light scattering. U.S. Patent No. 7,465,560. Washington, D.C.:U.S. Patent and Trademark Office.
    Jarvis, B., Hedges, A. J., & Corry, J. E. (2007). Assessment of measurement uncertainty for quantitative methods of analysis: comparative assessment of the precision (uncertainty) of bacterial colony counts. International Journal of Food Microbiology, 116(1), 44鈥?1.CrossRef
    Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141鈥?51.CrossRef
    Kapur, J. N., Sahoo, P. K., & Wong, A. C. K. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Graphical Models and Image Processing, 29(3), 273鈥?85.CrossRef
    Kaur, G., & Sethi, P. (2012). A novel methodology for automatic bacterial colony counter. International Journal of Computer Applications, 49(15), 21鈥?6.CrossRef
    Lamprecht, M. R., Sabatini, D. M., & Chapman, A. E. (2007). CellProfiler: free, versatile software for automated biological image analysis. BioTechniques, 42(1), 71鈥?5.CrossRef
    Landini, G., et al. (2013). Auto threshold (ImageJ). Fiji (Just ImageJ), http://鈥媐iji.鈥媠c/鈥婣uto_鈥婽hreshold . Accessed 9 March 2015.
    Lawless, C., Wilkinson, D. J., Young, A., Addinall, S. G., & Lydall, D. A. (2010). Colonyzer: automated quantification of micro-organism growth characteristics on solid agar. BMC Bioinformatics, 11, 287.CrossRef
    Marotz, J., L眉bbert, C., & Eisenbei脽, W. (2011). Effective object recognition for automated counting of colonies in petri dishes (automated colony counting). Computer Methods and Programs in Biomedicine, 66(2鈥?), 183鈥?98.
    Masschelein, B., Robles-Kelly, A., Blanch, C., Tack, K., Simpson-Young, B., & Lambrechts, A. (2012). Towards a colony counting system using hyperspectral imaging. In Proc. SPIE 8225, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues X, SPIE Photonics West, doi:10.鈥?117/鈥?2.鈥?08041
    O鈥橰ourke, S. M., Argenati, I., & Holden, N. M. (2011). The effect of region of interest size on model calibration for soil organic carbon prediction from hyperspectral images of prepared soils. Journal of Near Infrared Spectroscopy, 19, 161鈥?70.CrossRef
    Putman, M., Burton, R., & Nahm, M. H. (2005). Simplified method to automatically count bacterial colony forming unit. Journal of Immunological Methods, 302(1鈥?), 99鈥?02.CrossRef
    Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States鈥攎ajor pathogens. Emerging Infectious Diseases, 17(1), 7鈥?5.CrossRef
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676鈥?82 http://鈥媐iji.鈥媠c/鈥婩iji . Accessed 9 March 2015.CrossRef
    Sethi, H., & Yadav, S. (2012). Bacterial colony counter: manual vs automatic. IRACST-Engineering Science and Technology: An International Journal (ESTIJ), 2(1), 42鈥?4.
    Sharpe, A. N., Diotte, M. P., Peterkin, P. I., & Dudas, I. (1986). Towards the truly automated colony counter. Food Microbiology, 3(3), 247鈥?70.CrossRef
    Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. In Proc. 16th ACM Symposium on. Computational Geometry, 22, 21鈥?4.CrossRef
    Song, X., Pogue, B. W., Jiang, S., Doyley, M. M., Dehghani, H., Tosteson, T. D., & Paulsen, K. D. (2004). Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Applied Optics, 43(5), 1053鈥?062.CrossRef
    Tillman, G. E., Wasilenko, J. L., Simmons, M., Lauze, T. A., Minicozzi, J., Oakley, B. B., Narang, N., Fratamico, P., & Cray, W. C. (2012). Isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from ground beef using modified rainbow agar and post-immunomagnetic separation acid treatment. Journal of Food Protection, 75(9), 1548鈥?554.CrossRef
    USDA, FSIS. (2012). Shiga toxin-producing Escherichia coli in certain raw beef products. In Federal Register, 77, 31975.
    Wilkinson, M. H. F., & Schut, F. (1998). Digital image analysis of microbes: imaging, morphometry, fluorometry and motility techniques and applications. Hoboken, NJ:John Wiley & Sons.
    Williams, P. J., Geladi, P., Britz, T. J., & Manley, M. (2012a). Growth characteristics of three Fusarium species evaluated by near-infrared hyperspectral imaging and multivariate image analysis. Applied Microbiology and Biotechnology, 96(3), 803鈥?13.CrossRef
    Williams, P. J., Geladi, P., Britz, T. J., & Manley, M. (2012b). Near-infrared (NIR) hyperspectral imaging and multivariate image analysis to study growth characteristics and differences between species and strains of members of the genus Fusarium. Analytical and Bioanalytical Chemistry, 404, 1759鈥?769.CrossRef
    Windham, W. R., Yoon, S. C., Ladely, S. R., Heitschmidt, G. W., Lawrence, K. C., Park, B., Narang, N., & Cray, W. C. (2011) Screening non-O157 Shiga toxin-producing E. coli serotypes on agar media by hyperspectral imaging. Annual Meetig of Int. Assoc. Food Protection, poster presentation, P2-119.
    Windham, W. R., Yoon, S. C., Ladely, S. R., Heitschmidt, G. W., Lawrence, K. C., Park, B., Narang, N., & Cray, W. C. (2012). The effect of regions of interest and spectral pre-processing on the detection of non-0157 Shiga-toxin producing Escherichia coli serogroups on agar media by hyperspectral imaging. Journal of Near Infrared Spectroscopy, 20, 547鈥?58.CrossRef
    Windham, W. R., Yoon, S. C., Ladely, S. R., Haley, J., Heitschmidt, G. W., Lawrence, K. C., Park, B., Narang, N., & Cray, W. C. (2013). Hyperspectral imaging of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 on Rainbow agar. Journal of Food Protection, 76(7), 1129鈥?136.CrossRef
    Yen, J. C., Chang, F. J., & Chang, S. (1995). A new criterion for automatic multilevel thresholding. IEEE Trans. on Image Processing, 4(3), 370鈥?78.CrossRef
    Yoon, S. C., Lawrence, K. C., Siragusa, G. R., Line, J. E., Park, B., & Feldner, P. W. (2009). Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter. Transactions of the ASABE, 52, 651鈥?62.CrossRef
    Yoon, S. C., Lawrence, K. C., Line, J. E., Siragusa, G. R., Feldner, P. W., Park, B., & Windham, W. R. (2010). Detection of campylobacter colonies using hyperspectral imaging. Sensing and Instrumentation for Food Quality and Safety, 4, 35鈥?9.CrossRef
    Yoon, S. C., Windham, W. R., Ladely, S. R., Heitschmidt, G. W., Lawrence, K. C., Park, B., Narang, N., & Cray, W. C. (2013a). Hyperspectral imaging for differentiating colonies of non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups on spread plates of pure cultures. Journal of Near Infrared Spectroscopy, 21, 81鈥?5.CrossRef
    Yoon, S. C., Windham, W. R., Ladely, S. R., Heitschmidt, G. W., Lawrence, K. C., Park, B., Narang, N., & Cray, W. C. (2013b). Differentiation of big-six non-O157 Shiga-toxin producing Escherichia coli (STEC) on spread plates of mixed cultures using hyperspectral imaging. Journal of Food Measurement and Characterization, 7(2), 47鈥?9.CrossRef
    Zack, G. W., Rogers, W. E., & Latt, S. A. (1977). Automatic measurement of sister chromatid exchange frequency. Journal of Histochemistry and Cytochemistry, 25(7), 741鈥?53.CrossRef
    Zhang, G., Jayas, D. S., & White, N. D. G. (2005). Separation of touching grain kernels in an image by ellipse fitting algorithm. Biosystems Engineering, 92(2), 135鈥?42.CrossRef
    World Health Organization (WHO) Scientific Working Group (1998). Zoonotic non-O157 Shiga toxin-producing Escherichia coli (STEC). http://鈥媤hqlibdoc.鈥媤ho.鈥媔nt/鈥媓q/鈥?998/鈥媁HO_鈥婥SR_鈥婣PH_鈥?8.鈥?.鈥媝df . Accessed 9 March 2015.
  • 作者单位:Seung-Chul Yoon (1)
    Kurt C. Lawrence (1)
    Bosoon Park (1)

    1. U.S. Department of Agriculture, Agricultural Research Service, Quality and Safety Research Unit, Athens, GA, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictures although manual counting is still common. In microbiology, identification of presumptive-positive colonies on agar plates is predominantly done manually, which is laborious and time-consuming. This paper addresses a problem related to automatic colony segmentation and classification that can count the number of colonies according to their types. Hyperspectral imaging was used to develop a colony segmentation algorithm for detecting non-O517 Shiga-toxin producing Escherichia coli (STEC) pathogens on Rainbow agar. Hyperspectral absorbance image analysis in the visible and near-infrared spectral range from 400 to 1000 nm showed that colony morphology including size and texture was dependent on wavelength. The non-O157 STEC colonies showed dome-like absorbance profiles with local absorbance maxima. Touching colonies, causing problems for accurate counting and identification, were separated by optimally tessellating the mesh structure of local maximal points. The 428 nm was determined as the optimal wavelength for non-O157 STEC colony segmentation. The accuracy of the colony segmentation and counting algorithm was over 99 %. The average of the colony classification algorithm using automated colony segments was 92.5 %. Keywords Hyperspectral imaging Colony segmentation Colony counting Colony detection Colony classification Non-O157 STEC Pathogen detection Agar

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700