Range-wide comparisons of northern leatherside chub populations reveal historical and contemporary patterns of genetic variation
详细信息    查看全文
  • 作者:Jason R. Blakney (1)
    Janet L. Loxterman (1)
    Ernest R. Keeley (1)
  • 关键词:Leatherside chub ; Population structure ; Migration ; Habitat fragmentation ; Historical聽gene flow ; Contemporary gene flow
  • 刊名:Conservation Genetics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:15
  • 期:4
  • 页码:757-770
  • 全文大小:866 KB
  • 参考文献:1. Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander ( / Phaeognathus hubrichti). Conserv Genet 13:913鈥?23. doi:10.1007/s10592-012-0340-3 CrossRef
    2. Ardren WR, Amata L, Whelan J, Dehaan PW (2007) Characterization of 16 highly variable tetranucleotide microsatellite loci for Oregon chub ( / Oregonichthys crameri) and cross amplification in Umpqua chub ( / O. kalawatseti). Mol Ecol Notes 7:808鈥?10 CrossRef
    3. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341鈥?45. doi:10.1093/bioinformatics/bti803 CrossRef
    4. Billings WD (1978) Alpine phytogeography across the Great Basin. Gt Basin Nat Mem 2:105鈥?17
    5. Billman EJ, Lee JB, Young DO et al (2010) Phylogenetic divergence in a desert fish: differentiation of speckled dace within the Bonneville, Lahontan, and upper Snake River basins. West N Am Nat 70:39鈥?7 CrossRef
    6. Blakney JR (2012) Historical connectivity and contemporary isolation: population genetic structure of a rare high-desert minnow, the northern leatherside chub ( / Lepidomeda copei). MS thesis, Idaho State University
    7. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153鈥?54 CrossRef
    8. Bouchard DP, Kaufman DS, Hochberg A, Quade J (1998) Quaternary history of the Thatcher Basin, Idaho, reconstructed from the 87Sr/86Sr and amino acid composition of lacustrine fossils: implications for the diversion of the Bear River into the Bonneville Basin. Palaeogeogr Palaeoclimatol Palaeoecol 141:95鈥?14 CrossRef
    9. Brown JH (1971) Mammals on mountaintops: nonequilibrium insular biogeography. Am Nat 105:467鈥?78 CrossRef
    10. Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345鈥?358. doi:10.1111/j.1365-294X.2010.04860.x CrossRef
    11. Comstock JP, Ehleringer JR (1992) Plant adaptation in the Great Basin and Colorado Plateau. West N Am Nat 52:195鈥?15
    12. Cosacov A, S茅rsic AN, Sosa V et al (2010) Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of / Calceolaria polyrhiza. J Biogeogr 37:1463鈥?477. doi:10.1111/j.1365-2699.2010.02307.x
    13. DeHaan PW, Scheerer PD, Rhew R, Ardren WR (2012) Analyses of genetic variation in populations of Oregon chub, a threatened floodplain minnow in a highly altered environment. Trans Am Fish Soc 141:533鈥?49. doi:10.1080/00028487.2012.670184 CrossRef
    14. Denton C (2007) Bear River: last chance to change course. Utah State University Press, Logan, UT
    15. Dowling TE, Tibbets CA, Minckley W et al (2002) Evolutionary relationships of the plagopterins (Teleostei: Cyprinidae) from cytochrome b sequences. Copeia 2002:665鈥?78 CrossRef
    16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792鈥?797 CrossRef
    17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611鈥?620 CrossRef
    18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564鈥?67 CrossRef
    19. Fleishman E, Austin G, Murphy D (2001) Biogeography of Great Basin butterflies: revisiting patterns, paradigms, and climate change scenarios. Biol J Linn Soc 74:501鈥?15 CrossRef
    20. Floyd CH, Van Vuren DH, May B (2005) Marmots on Great Basin mountaintops: using genetics to test a biogeographic paradigm. Ecology 86:2145鈥?153 CrossRef
    21. Fumagalli L, Snoj A, Jesen拧ek D et al (2008) Extreme genetic differentiation among the remnant populations of marble trout ( / Salmo marmoratus) in Slovenia. Mol Ecol 11:2711鈥?716 CrossRef
    22. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm
    23. Guzik MT, Adams MA, Murphy NP et al (2012) Desert springs: deep phylogeographic structure in an ancient endemic crustacean ( / Phreatomerus latipes). PLoS ONE 7:e37642. doi:10.1371/journal.pone.0037642 CrossRef
    24. Hansen WR (1985) Drainage development of the Green River basin in southwestern Wyoming and its bearing on fish biogeography, neotectonics, and paleoclimates. Mt Geol 22:192鈥?04
    25. Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3鈥?6 CrossRef
    26. Hershler R, Sada DW (2002) Biogeography of Great Basin aquatic snails of the genus / Pyrgulopsis. In: Hershler R, Madsen D, Currey DR (eds) Great Basin aquatic systems history. Smithsonian Institution Press, Washington, DC, pp 255鈥?76
    27. Hopken MW, Douglas MR, Douglas ME (2013) Stream hierarchy defines riverscape genetics of a North American desert fish. Mol Ecol 22:956鈥?71. doi:10.1111/mec.12156 CrossRef
    28. Hopkirk JD, Behnke RJ (1966) Additions to the known native fish fauna of Nevada. Copeia 1966:134鈥?36 CrossRef
    29. Horton B (1992) Lake renovation procedures manual. Idaho Department of Fish and Game, Boise, ID 090:59
    30. Houston DD, Shiozawa DK, Riddle BR (2011) The roles of Neogene geology and late Pleistocene lake levels in shaping the genetic structure of the Lahontan redside shiner / Richardsonius egregius (Teleostei: Cyprinidae). Biol J Linn Soc 104:163鈥?76 CrossRef
    31. Hubbs CL, Miller RR (1948) The zoological evidence: correlation between fish distribution and hydrographic history in the desert basins of western United States. Bull Univ Utah 38:17鈥?66
    32. Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59:573鈥?83 CrossRef
    33. Johnson JB (2002) Evolution after the flood: phylogeography of the desert fish Utah chub. Evolution 56:948鈥?60 CrossRef
    34. Johnson JB, Jordan S (2000) Phylogenetic divergence in leatherside chub ( / Gila copei) inferred from mitochondrial cytochrome b sequences. Mol Ecol 9:1029鈥?035 CrossRef
    35. Johnson JB, Dowling TE, Belk MC (2004) Neglected taxonomy of rare desert fishes: congruent evidence for two species of leatherside chub. Syst Biol 53:841鈥?55. doi:10.1080/10635150490522557 CrossRef
    36. Johnston CE (2000) Movement patterns of imperiled blue shiners (Pisces: Cyprinidae) among habitat patches. Ecol Freshw Fish 9:170鈥?76. doi:10.1111/j.1600-0633.2000.eff090306.x CrossRef
    37. Junker J, Peter A, Wagner C et al (2012) River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead ( / Cottus gobio). Conserv Genet 13:545鈥?56 CrossRef
    38. Keeler-Foster CL, Spies IB, Bondu-Hawkins V, Bentzen P (2004) Development of microsatellite markers in bonytail ( / Gila elegans) with cross-species amplification in humpback chub ( / Gila cypha). Mol Ecol Notes 4:23鈥?5 CrossRef
    39. Keeley ER, Blakney JR, Loxterman JL (2012) Distribution, abundance, and genetic population structure of northern leatherside chub in the Snake River basin of Idaho. Final report to the US Fish and Wildlife Service, agreement no. 143309G735. Idaho State University, Pocatello, ID
    40. Kinziger AP, Nakamoto RJ, Anderson EC, Harvey BC (2011) Small founding number and low genetic diversity in an introduced species exhibiting limited invasion success (speckled dace, / Rhinichthys osculus). Ecol Evol 1:73鈥?4. doi:10.1002/ece3.8 CrossRef
    41. Link PK, Kaufman DS, Thackray GD (1999) Field guide to Pleistocene lakes Thatcher, and Bonneville and the Bonneville Flood, southeastern Idaho. In: Hughes SS, Thackray GD (eds) Guidebook to the geology of eastern Idaho. Idaho Museum of Natural History, Pocatello, ID, pp 251鈥?66
    42. Loxterman JL, Keeley ER (2012) Watershed boundaries and geographic isolation: patterns of diversification in cutthroat trout from western North America. BMC Evol Biol 12:38 CrossRef
    43. McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby ( / Eucyclogobius newberryi). Mol Ecol 19:3315鈥?327 CrossRef
    44. Meffe GK (1986) Conservation genetics and the management of endangered fishes. Fisheries 11:14鈥?3 CrossRef
    45. Meffe GK, Vrijenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157鈥?69 CrossRef
    46. Meyer KA, Lamansky JA, Schill DJ, Zaroban DW (2013) Nongame fish species distribution and habitat associations in the Snake River basin of southern Idaho. West N Am Nat 73:20鈥?4 CrossRef
    47. Minckley WL, Hendrickson DA, Bond CE (1986) Geography of western North American freshwater fishes: description and relationships to transcontinental tectonism. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley-Interscience, New York, NY, pp 519鈥?13
    48. Mock KE, Brim-Box JC, Miller MP et al (2004) Genetic diversity and divergence among freshwater mussel ( / Anodonta) populations in the Bonneville basin of Utah. Mol Ecol 13:1085鈥?098 CrossRef
    49. Mock KE, Evans RP, Crawford M et al (2006) Rangewide molecular structuring in the Utah sucker ( / Catostomus ardens). Mol Ecol 15:2223鈥?238 CrossRef
    50. Mock KE, Bjerregaard LS, Belk MC et al (2008) Microsatellite markers for leatherside chubs / Lepidomeda aliciae and / Lepidomeda copei. Mol Ecol Resour 8:172鈥?74 CrossRef
    51. Morales P, Vila I, Poulin E (2011) Genetic structure in remnant populations of an endangered cyprinodontid fish, / Orestias ascotanensis, endemic to the Ascot谩n salt pan of the Altiplano. Conserv Genet 12:1639鈥?643 CrossRef
    52. Nannini MA, Belk MC (2006) Antipredator responses of two native stream fishes to an introduced predator: does similarity in morphology predict similarity in behavioural response? Ecol Freshw Fish 15:453鈥?63 CrossRef
    53. Neville HM, Dunham JB, Peacock MM (2006) Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landscape Ecol 21:901鈥?16 CrossRef
    54. O鈥橫alley KG, Markle DF, Ardren WR (2013) Timing of population fragmentation in a vulnerable minnow, the Umpqua chub, and the role of nonnative predators. Trans Am Fish Soc 142:447鈥?57. doi:10.1080/00028487.2012.728166 CrossRef
    55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945鈥?59
    56. Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Totowa, NJ, pp 337鈥?50 CrossRef
    57. Rubey WW, Oriel SS, Tracey JI (1975) Geology of the Sage and Kemmerer 15-minute quadrangles, Lincoln County. US Government Printing Office, Wyoming
    58. Saillant E, Patton JC, Ross KE, Gold JR (2004) Conservation genetics and demographic history of the endangered Cape Fear shiner ( / Notropis mekistocholas). Mol Ecol 13:2947鈥?958. doi:10.1111/j.1365-294X.2004.02303.x CrossRef
    59. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787鈥?92 CrossRef
    60. Smith GR (1978) Biogeography of intermountain fishes. Gt Basin Nat Mem 2:17鈥?2
    61. Smith GR, Dowling TE, Goblat KW et al (2002) Biogeography and timing of evolutionary events among Great Basin fishes. In: Hershler R, Madsen D, Currey DR (eds) Great Basin aquatic systems history. Smithsonian Institution Press, Washington, DC, pp 175鈥?54
    62. Sterling KA, Reed DH, Noonan BP, Warren ML (2012) Genetic effects of habitat fragmentation and population isolation on / Etheostoma raneyi (Percidae). Conserv Genet 13:859鈥?72 CrossRef
    63. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731鈥?739 CrossRef
    64. Tanner WW (1978) Zoogeography of reptiles and amphibians in the intermountain region. Gt Basin Nat Mem 2:43鈥?3
    65. Wallace RL (1980) / Gila copei (Jordan and Gilbert), leatherside chub. In: Lee DS, Gilbert CR, Hocutt CH et al (eds) Atlas of North American freshwater fishes, 1st edn. North Carolina Museum of Natural History, Raleigh, NC, p 163
    66. Walser CA, Belk MC, Shiozawa DK (1999) Habitat use of leatherside chub ( / Gila copei) in the presence of predatory brown trout ( / Salmo trutta). West N Am Nat 59:272鈥?77
    67. Whiteley AR, Spruell P, Allendorf FW (2006) Can common species provide valuable information for conservation? Mol Ecol 15:2767鈥?786 CrossRef
    68. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177鈥?191
    69. Zafft DJ, Amadio C, Cavalli PA et al (2009) Northern leatherside distribution in Wyoming. Wyoming Game and Fish Department, Cheyenne, WY 16p
  • 作者单位:Jason R. Blakney (1)
    Janet L. Loxterman (1)
    Ernest R. Keeley (1)

    1. Department of Biological Sciences, Idaho State University, Stop 8007, Pocatello, ID, 83209, USA
  • ISSN:1572-9737
文摘
Patchily distributed species are those taxa whose populations occupy geographically insular habitats and their conservation often depends on an understanding of the relationship among disjunct populations. The objective of our study was to use molecular data and analytical techniques to separate the effects of historical and contemporary processes influencing the distribution of a high-desert minnow, the northern leatherside chub (Lepidomeda copei). Individuals from 23 populations were sequenced for 1,140 base pairs of the cytochrome B gene of the mitochondrial genome and genotyped at seven nuclear microsatellite loci. We estimated gene flow and examined population structure using both microsatellite and mtDNA data. Low sequence divergence and the distribution of shared haplotypes in multiple watersheds suggest historical connectivity between populations over a large geographic area. In contrast, patterns of microsatellite diversity indicate that populations of leatherside chub are isolated from one another with low levels of contemporary gene flow between populations. Our results suggest that populations of leatherside chub were historically more widely inter-connected and have recently been isolated, likely through a combination of natural and anthropogenic habitat fragmentation. As populations become increasingly isolated, they are more vulnerable to extirpation as a result of stochastic events. For northern leatherside chub, recent isolation and lack of gene flow among populations may affect their long-term survival in the arid landscapes of the Great Basin and surrounding watersheds because of widespread and increasing habitat alteration and fragmentation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700