Polyol-mediated syntheses of crystalline nanosized manganese oxides
详细信息    查看全文
  • 作者:Guiqiang Diao (1) (2)
    Fran?ois Chau (1)
    Jean-Yves Piquemal (1)
    Emmanuel Briot (5)
    Souad Ammar (1)
    Micka?l Sicard (4)
    Sophie Nowak (1)
    Patricia Beaunier (3)
    Hélène Lecoq (1)
    P. Decorse (1)
    Lin Yu (2)
  • 关键词:Manganese oxide ; Polyol ; Synthesis ; Birnessite ; Spinel ; Nanoflake
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 全文大小:
  • 参考文献:1. Ahmed KAM, Huang K (2012) Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Mater Chem Phys 133:605-10 CrossRef
    2. Amatucci G, Du Pasquier A, Blyr A, Zheng T, Tarascon JM (1999) The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim Acta 45:255-71 CrossRef
    3. Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villain F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186-92 CrossRef
    4. Atribak I, Bueno-López A, García-García A, Navarro P, Frías D, Montes M (2010) Catalytic activity for soot combustion of birnessite and cryptomelane. Appl Catal B Environ 93:267-73 CrossRef
    5. Bitenc M, Dra?i? G, Orel ZC (2009) Characterization of crystalline zinc oxide in the form of hexagonal bipods. Cryst Growth Des 10:830-37 CrossRef
    6. Blin B, Fiévet F, Beaupère D, Figlarz M (1989) Oxydation duplicative de l’éthylèneglycol dans un nouveau procédé de préparation de poudres métalliques. New J Chem 13:67-2
    7. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309-19 CrossRef
    8. Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. J Phys Chem C 115:2656-664 CrossRef
    9. Chakroune N, Viau G, Ammar S, Jouini N, Gredin P, Vaulay MJ, Fiévet F (2005) Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: Co(C2H4O2). New J Chem 29:355 CrossRef
    10. Ching S, Landrigan JA, Jorgensen ML, Duan N, Suib SL, O’Young C-L (1995) Sol–gel synthesis of birnessite from KMnO4 and simple sugars. Chem Mater 7:1604-606 CrossRef
    11. Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Sol–gel synthesis of layered birnessite-type manganese oxides. Inorg Chem 36:883-90 CrossRef
    12. Chkoundali S, Ammar S, Jouini N, Fiévet F, Molinié P, Danot M, Villain F, Grenèche JM (2004) Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J Phys Condens Matter 16:4357-372 CrossRef
    13. Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem Mater 7:1226-232 CrossRef
    14. Fiévet F, Brayner R (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London
    15. Gaillot A-C, Drits VA, Plan?on A, Lanson B (2004) Structure of synthetic K-rich birnessites obtained by high-temperature decomposition of KMnO4. 2. Phase and structural heterogeneities. Chem Mater 16:1890-905 CrossRef
    16. Gaudisson T, Artus M, Acevedo U, Herbst F, Nowak S, Valenzuela R, Ammar S (submitted to J Phys Condens Matter) On the microstructural and magnetic properties of fine grained CoFe2O4 ceramics produced by combining polyol process and Spark Plasma Sintering
    17. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130-139 CrossRef
    18. Goikolea E, Daffos B, Taberna PL, Simon P (2013) Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors. Mater Renew Sustain Energy 2:16 CrossRef
    19. Larcher D, Sudant G, Patrice R, Tarascon JM (2003) Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem Mater 15:3543-551 CrossRef
    20. Latimer WM (1952) Oxidation potentials, 2nd edn. Prentice Hall Inc., New York
    21. Li Y, Wang J, Zhang Y, Banis MN, Liu J, Geng D, Li R, Sun X (2012) Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J Colloid Interface Sci 369:123-28 CrossRef
    22. Liu L, Yang Z, Liang H, Yang H, Yang Y (2010) Shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route. Mater Lett 64:891-93 CrossRef
    23. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter of the Commission on Powder Diffraction: 14
    24. Ma R, Bando Y, Zhang L, Sasaki T (2004) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16:918-22 CrossRef
    25. Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428-31 CrossRef
    26. Nayak PK, Munichandraiah N (2011) Mesoporous MnO2 synthesized by using a tri-block copolymer for electrochemical supercapacitor studies. Microporous Mesoporous Mater 143:206-14 CrossRef
    27. Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos JP, Kumagai N (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53:3084-093 CrossRef
    28. Orel ZC, An?lovar A, Dra?i? G, ?igon M (2007) Cuprous oxide nanowires prepared by an additive-free polyol process. Cryst Growth Des 7:453-58 CrossRef
    29. Portehault D, Cassaignon S, Nassif N, Baudrin E, Jolivet JP (2008) A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew Chem Int Ed 47:6441-444 CrossRef
    30. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447-454 CrossRef
    31. Post JE, Veblen DR (1990) Am Mineral 75:477-89
    32. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang S-J, Choy J-H, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303-309 CrossRef
    33. Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37:412-16 CrossRef
    34. Rhadfi T, Piquemal J-Y, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A Gen 386:132-39 CrossRef
    35. Rhadfi T, Sicard L, Testard F, Taché O, Atlamsani A, Anxolabéhère-Mallart E, Le Du Y, Binet L, Piquemal J-Y (2012) A comprehensive study of the mechanism of formation of polyol-made hausmannite nanoparticles: from molecular species to solid precipitation. J Phys Chem C 116:5516-523 CrossRef
    36. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids, 1st edn. Academic Press, San Diego
    37. Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, New York
    38. Sebastian L, Gopalakrishnan J (2003) Lithium ion mobility in metal oxides: a materials chemistry perspective based on a lecture delivered at the international symposium “Materials for energy: batteries and fuel cells- November 2002, Madrid. J Mater Chem 13:433-41
    39. Sicard L, Le Meins J-M, Méthivier C, Herbst F, Ammar S (2010) Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. J Magn Magn Mater 322:2634-640 CrossRef
    40. Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077-081 CrossRef
    41. Soumare Y, Piquemal JY, Maurer T, Ott F, Chaboussant G, Falqui A, Viau G (2008) Oriented magnetic nanowires with high coercivity. J Mater Chem 18:5696-702 CrossRef
    42. Soumare Y, Garcia C, Maurer T, Chaboussant G, Ott F, Fiévet F, Piquemal J-Y, Viau G (2009) Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv Funct Mater 19:1971-977 CrossRef
    43. Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41:479-87 CrossRef
    44. Tekaia-Elhsissen K, Delahaye-Vidal A, Nowogrocki G, Figlarz M (1989a) Solid-state chemistry: characterization and structure of a nickel ethylene glycolate Ni(OCH2–CH2O). C R Acad Sci Ser II 309:469-72
    45. Tekaia-Elhsissen K, Delahaye-Vidal A, Nowogrocki G, Figlarz M (1989b) Solid state chemistry: reaction of nickel hydroxide with ethylene glycol. C R Acad Sci Ser II 309:349-52
    46. Toneguzzo P, Viau G, Acher O, Fiévet-Vincent F, Fiévet F (1998) Monodisperse ferromagnetic particles for microwave applications. Adv Mater 10:1032-035 CrossRef
    47. Ung D, Viau G, Ricolleau C, Warmont F, Gredin P, Fiévet F (2005) CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv Mater 17:338-44 CrossRef
    48. Ung D, Soumare Y, Chakroune N, Viau G, Vaulay M-J, Richard V, Fiévet F (2007) Growth of magnetic nanowires and nanodumbbells in liquid polyol. Chem Mater 19:2084-094 CrossRef
    49. Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fiévet-Vincent F, Fiévet F (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486-94 CrossRef
    50. Wang Y-T, Lu A-H, Li W-C (2012) Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous Mesoporous Mater 153:247-53 CrossRef
    51. Wieland B, Lancaster JP, Hoaglund CS, Holota P, Tornquist WJ (1996) Electrochemical and infrared spectroscopic quantitative determination of the platinum-catalyzed ethylene glycol oxidation mechanism at co adsorption potentials. Langmuir 12:2594-601 CrossRef
    52. Yang L-X, Zhu Y-J, Cheng G-F (2007) Synthesis of well-crystallized birnessite using ethylene glycol as a reducing reagent. Mater Res Bull 42:159-64 CrossRef
    53. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41:4218-244 CrossRef
    54. Zhang X, Chang X, Chen N, Wang K, Kang L, Liu Z-H (2012) Synthesis and capacitive property of δ-MnO2 with large surface area. J Mater Sci 47:999-003 CrossRef
    55. Zhou J, Yu L, Sun M, Yang S, Ye F, He J, Hao Z (2013) Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor. Ind Eng Chem Res 52:9586-593 CrossRef
  • 作者单位:Guiqiang Diao (1) (2)
    Fran?ois Chau (1)
    Jean-Yves Piquemal (1)
    Emmanuel Briot (5)
    Souad Ammar (1)
    Micka?l Sicard (4)
    Sophie Nowak (1)
    Patricia Beaunier (3)
    Hélène Lecoq (1)
    P. Decorse (1)
    Lin Yu (2)

    1. Université Paris Diderot, Sorbonne Paris Cité, ITODYS, CNRS UMR 7086, 15 rue J.-A. de Ba?f, 75205, Paris Cedex 13, France
    2. Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People’s Republic of China
    5. UPMC-Paris 06, UMR 8234, Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
    4. Department of Fundamental and Applied Energetics, ONERA, 91761, Palaiseau Cedex, France
    3. UPMC-Paris 06, UMR 7197, Laboratoire de Réactivité de Surface, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
  • ISSN:1572-896X
文摘
Potassium-type birnessite and lithium-containing manganese oxides were prepared by the polyol process. The Mn(III)/Mn(IV) mixed-valencies compounds are obtained through the controlled reduction of potassium permanganate in a basic water–diethylene glycol mixture at moderate temperature and very short reaction time, 70?°C and 10?min, respectively. Both solids are quite well crystallized and display high specific surface areas, 137 and 329?m2?g?, respectively. Several polyols with variable chain lengths have been used and it is shown that the nature of the polyol has a marked influence on the textural properties of the birnessite-type solid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700