Damping collaborative optimization of five-suspensions for driver-seat-cab coupled system
详细信息    查看全文
  • 作者:Leilei Zhao ; Changcheng Zhou ; Yuewei Yu
  • 关键词:vehicle engineering ; seat and cab system ; Five ; suspensions ; damping collaborative optimization
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:29
  • 期:4
  • 页码:773-780
  • 全文大小:798 KB
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
  • 卷排序:29
文摘
Both the seat and cab system of truck play a vital role in ride comfort. The damping matching methods of the two systems are studied separately at present. However, the driver, seat, and cab system are one inseparable whole. In order to further improve ride comfort, the seat suspension is regarded as the fifth suspension of the cab, a new idea of “Five-suspensions” is proposed. Based on this idea, a 4 degree-of-freedom driver-seat-cab coupled system model is presented. Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output, the simulation model is built. Taking optimal ride comfort as target, a new method of damping collaborative optimization for Five-suspensions is proposed. With a practical example of seat and cab system, the damping parameters are optimized and validated by simulation and bench test. The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s2 and 0.39 m/s2, respectively, with a decrease by 22.0%, which proves the model and method proposed are correct and reliable. The idea of “Five-suspensions” and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700