Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations
详细信息    查看全文
  • 作者:Chuey Yong Leong ; H. Wagiran ; A. K. Ismail…
  • 关键词:Thermoluminescence ; Aluminium oxide doped carbon and co ; doped titanium ; Dosimetry ; TL intensity
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:307
  • 期:1
  • 页码:229-236
  • 全文大小:1,256 KB
  • 参考文献:1.Recent applications of the NCRP public dose limit recommendation for ionizing radiation. NCRP Statement No. 10. 2004 (2004) NCRP, National Council on Radiation Protection and Measurements. http://​www.​ncrponline.​org/​Publications/​Statements/​Statements.​html . Accessed 24 Nov 2014
    2.Dixon R, Gray JE, Archer B, Simpkin D (2005) Radiation protection standards: their evolution from science to philosophy. Radiat Prot Dosimetry 115(1–4):16–22. doi:10.​1093/​rpd/​nci133 CrossRef
    3.Azorin J (2014) Preparation methods of thermoluminescent materials for dosimetric applications: an overview. Appl Radiat Isot 83:187–191. doi:10.​1016/​j.​apradiso.​2013.​04.​031 CrossRef
    4.Furetta C (2009) Handbook of Thermoluminescence. World Scientific Pub, River Edge, NJ. doi:10.​1142/​9789812838926_​0020 CrossRef
    5.Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42(4–5):576–581. doi:10.​1016/​j.​radmeas.​2007.​02.​067 CrossRef
    6.Akselrod MS et al (1993) Preparation and properties of alpha-Al2O3:C. Radiat Prot Dosim 47(1–4):159–164
    7.Xin-Bo Y, Jun X, Hong-Jun L, Qun-Yu B, Yan C, Liang-Bi S, Qiang T (2010) Thermoluminescence and optically stimulated luminescence disadvantages of α-Al2O3:C crystal grown by the temperature gradient technique. Chinese Phys B 19(4):047803. doi:10.​1088/​1674-1056/​19/​4/​047803 CrossRef
    8.Liu Q, Yang Q, Zhao G, Lu S (2014) Titanium effect on the thermoluminescence and optically stimulated luminescence of Ti, Mg: α-Al 2 O 3 transparent ceramics. J Alloy Compd 582:754–758. doi:10.​1016/​j.​jallcom.​2013.​07.​189 CrossRef
    9.McKeever S (1991) Measurements of emission spectra during thermoluminescence (TL) from LiF (Mg, Cu, P) TL dosimeters. J Phys D 24(6):988. doi:10.​1088/​0022-3727/​24/​6/​027 CrossRef
    10.Rodriguez MG, Denis G, Akselrod MS, Underwood TH, Yukihara EG (2011) Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C, Mg. Radiat Meas 46(12):1469–1473. doi:10.​1016/​j.​radmeas.​2011.​04.​026 CrossRef
    11.Bos AJJ (2001) High sensitivity thermoluminescence dosimetry. Nucl Instrum Meth B 184(1–2):3–28. doi:10.​1016/​S0168-583X(01)00717-0 CrossRef
    12.Ogundare FO, Ogundele SA, Chithambo ML, Fasasi MK (2013) Thermoluminescence characteristics of the main glow peak in α-Al2O3:C exposed to low environmental-like radiation doses. J Lumin 139:143–148. doi:10.​1016/​j.​jlumin.​2013.​02.​034 CrossRef
    13.Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna. doi:10.​1118/​1.​2890977
    14.Bensaleh S, Bezak E (2011) The impact of uncertainties associated with MammoSite brachytherapy on the dose distribution in the breast. J Appl Clin Med Phys 12(4):3464. doi:10.​1120/​jacmp.​v12i4.​3464
    15.Cava S, Tebcherani SM, Souza IA, Pianaro SA, Paskocimas CA, Longo E, Varela JA (2007) Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys 103(2–3):394–399. doi:10.​1016/​j.​matchemphys.​2007.​02.​046 CrossRef
    16.Rogojan R, Andronescu E, Ghitulica C, Vasile BS (2011) Synthesis and characterization of alumina nano-powder obtained by sol-gel method. UPB Bull Scientific Ser B 73(2):67–76
    17.Surdo A, Kortov V, Sharafutdinov F (1999) Luminescence of anion-defective corundum with titanium impurity. Radiat Prot Dosimetry 84(1–4):261–263CrossRef
    18.Surdo AI, Kortov VS (2004) Exciton mechanism of energy transfer to F-centers in dosimetric corundum crystals. Radiat Meas 38(4–6):667–671. doi:10.​1016/​j.​radmeas.​2003.​12.​001 CrossRef
    19.Oberhofer M, Scharmann A (1993) Techniques and management of personnel thermoluminescence dosimetry services, vol 2. Springer Science & Business Media, New York
    20.Matsunaga K, Nakamura A, Yamamoto T, Ikuhara Y (2003) First-principles study of defect energetics in titanium-doped alumina. Phys Rev B 68(21):214102. doi:10.​1103/​PhysRevB.​68.​214102 CrossRef
    21.Mikhailik V, Kraus H, Wahl D, Mykhaylyk M (2006) Studies of the luminescence properties of Ti-doped Al2O3 under VUV excitation. Hasylab Annual report
    22.Pekpak E, Yilmaz A, Özbayoglu G (2010) An overview on preparation and TL characterization of lithium borates for dosimetric use. TOMPJ 3(1):14–24. doi:10.​2174/​1874841401003010​014 CrossRef
    23.Khan FM (2003) Khan’s the physics of radiation. Therapy. doi:10.​1120/​jacmp.​v4i4.​2507
    24.González P, Furetta C, Calvo B, Gaso M, Cruz-Zaragoza E (2007) Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions. Nucl Instrum Meth B 260(2):685–692. doi:10.​1016/​j.​nimb.​2007.​04.​155 CrossRef
    25.Hendee WR, Ritenour ER (2003) Medical imaging physics. Wiley, New York. doi:10.​1002/​0471221155
    26.Garlick G, Gibson A (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc Phys Soc London 60(6):574. doi:10.​1088/​0959-5309/​60/​6/​308 CrossRef
    27.Correcher V, Gomez-Ros J, Garcia-Guinea J, Lis M, Sanchez-Munoz L (2008) Calculation of the activation energy in a continuous trap distribution system of a charoite silicate using initial rise and TL glow curve fitting methods. Radiat Meas 43(2):269–272CrossRef
    28.Zahedifar M, Eshraghi L, Sadeghi E (2012) Thermoluminescence kinetics analysis of α-Al2O3:C at different dose levels and populations of trapping states and a model for its dose response. Radiat Meas 47(10):957–964. doi:10.​1016/​j.​radmeas.​2012.​07.​018 CrossRef
    29.Ortega F, Marcazzó J, Molina P, Santiago M, Lester M, Henniger J, Caselli E (2013) Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps. Appl Radiat Isot 78:33–37. doi:10.​1016/​j.​apradiso.​2013.​02.​023 CrossRef
  • 作者单位:Chuey Yong Leong (1)
    H. Wagiran (1)
    A. K. Ismail (1)
    H. Ali (2)

    1. Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
    2. Department of Oncology and radiotherapy, Hospital Sultan Ismail, UTM, 81310, Johor Bahru, Johor, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
In this work, thermoluminescence (TL) characteristics of powder form of polycrystalline aluminium oxide doped with 0.2 atomic percentage (at%) carbon (Al2O3:C 0.2 at%) and co-doped with two different concentrations of titanium (0.1 and 0.2 at%) subjected to X-ray irradiations were studied. This study was conducted to determine the capability of Al2O3:C co-doped with titanium (Al2O3:C:Ti) for thermoluminescent dosimetry (TLD). Al2O3:C co-doped with 0.1 at% titanium sample exhibited the highest TL intensity centered at 184 °C and a lower TL peak at 254 °C. It has shown some good dosimetric properties and can be considered to be used as TLD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700