New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation
详细信息    查看全文
  • 作者:Romain Delcombel (1)
    Lauriane Janssen (1)
    Roger Vassy (2)
    Melissa Gammons (3)
    Oualid Haddad (4)
    Benjamin Richard (4)
    Didier Letourneur (4)
    David Bates (3)
    Céline Hendricks (1)
    Johannes Waltenberger (5)
    Anna Starzec (2)
    Nor Eddine Sounni (6)
    Agnès No?l (6)
    Christophe Deroanne (1)
    Charles Lambert (1)
    Alain Colige (1)
  • 关键词:VEGF isoforms ; Angiogenesis ; Neuropilin ; 1 ; VEGF receptor ; Alternative splicing
  • 刊名:Angiogenesis
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:16
  • 期:2
  • 页码:353-371
  • 全文大小:2202KB
  • 参考文献:1. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J Off Publ Fed Am Soc Exper Biol 13(1):9-2
    2. Ferrara N (2004) Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9(Suppl 1):2-0 f="http://dx.doi.org/10.1634/theoncologist.9-suppl_1-2">CrossRef
    3. Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24(1):75-8 f="http://dx.doi.org/10.1016/S0146-0005(00)80061-0">CrossRef
    4. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988-6995
    5. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735-45 f="http://dx.doi.org/10.1016/S0092-8674(00)81402-6">CrossRef
    6. Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276(27):25520-5531. doi:f">10.1074/jbc.M102315200 f="http://dx.doi.org/10.1074/jbc.M102315200">CrossRef
    7. Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Liou GI, Caldwell RW (2005) Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 6(4):511-24 f="http://dx.doi.org/10.2174/1389450054021981">CrossRef
    8. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 3(11):1222-227 f="http://dx.doi.org/10.1038/nm1197-1222">CrossRef
    9. Yang YH, Rajaiah R, Ruoslahti E, Moudgil KD (2011) Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proc Natl Acad Sci USA 108(31):12857-2862. doi:f">10.1073/pnas.1103569108 f="http://dx.doi.org/10.1073/pnas.1103569108">CrossRef
    10. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11-6. doi:f">10.1159/000088479 f="http://dx.doi.org/10.1159/000088479">CrossRef
    11. Claffey KP, Senger DR, Spiegelman BM (1995) Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim Biophys Acta 1246(1):1- f="http://dx.doi.org/10.1016/0167-4838(94)00144-6">CrossRef
    12. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111-65) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271(13):7788-795 f="http://dx.doi.org/10.1074/jbc.271.13.7788">CrossRef
    13. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681-91. doi:f">10.1083/jcb.200409115 f="http://dx.doi.org/10.1083/jcb.200409115">CrossRef
    14. Soker S, Fidder H, Neufeld G, Klagsbrun M (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 271(10):5761-767 f="http://dx.doi.org/10.1074/jbc.271.10.5761">CrossRef
    15. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N, Tong RK, Kowalski J, Yee SF, Pacheco G, Ross S, Cheng Z, Le Couter J, Plowman G, Peale F, Koch AW, Wu Y, Bagri A, Tessier-Lavigne M, Watts RJ (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11(1):53-7. doi:f">10.1016/j.ccr.2006.10.018 f="http://dx.doi.org/10.1016/j.ccr.2006.10.018">CrossRef
    16. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci CMLS 63(5):601-15. doi:f">10.1007/s00018-005-5426-3 f="http://dx.doi.org/10.1007/s00018-005-5426-3">CrossRef
    17. Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exper Biol 22(8):3078-086. doi:f">10.1096/fj.08-107219
    18. Ballmer-Hofer K, Andersson AE, Ratcliffe LE, Berger P (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118(3):816-26. doi:f">10.1182/blood-2011-01-328773 f="http://dx.doi.org/10.1182/blood-2011-01-328773">CrossRef
    19. Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C (2012) Do anti-angiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale. PLoS ONE 7(5):e35231. doi:f">10.1371/journal.pone.0035231 f="http://dx.doi.org/10.1371/journal.pone.0035231">CrossRef
    20. Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, Noel A, Voo S, Waltenberger J, Lapiere CM, Nusgens BV, Lambert CA (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179(6):1261-273. doi:f">10.1083/jcb.200703052 f="http://dx.doi.org/10.1083/jcb.200703052">CrossRef
    21. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4(12):1317-326
    22. Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272(20):13390-3396 f="http://dx.doi.org/10.1074/jbc.272.20.13390">CrossRef
    23. Herve MA, Buteau-Lozano H, Vassy R, Bieche I, Velasco G, Pla M, Perret G, Mourah S, Perrot-Applanat M (2008) Overexpression of vascular endothelial growth factor 189 in breast cancer cells leads to delayed tumor uptake with dilated intratumoral vessels. Am J Pathol 172(1):167-78. doi:f">10.2353/ajpath.2008.070181 f="http://dx.doi.org/10.2353/ajpath.2008.070181">CrossRef
    24. Parker MW, Xu P, Li X, Vander Kooi CW (2012) Structural basis for the selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem. doi:f">10.1074/jbc.M111.331140
    25. Cebe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, Manlius C, Wood J, Ballmer-Hofer K (2006) A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci CMLS 63(17):2067-077. doi:f">10.1007/s00018-006-6254-9 f="http://dx.doi.org/10.1007/s00018-006-6254-9">CrossRef
    26. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M, Perret GY (2006) Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79(25):2370-381. doi:f">10.1016/j.lfs.2006.08.005 f="http://dx.doi.org/10.1016/j.lfs.2006.08.005">CrossRef
    27. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822-835. doi:f">10.1158/0008-5472.CAN-04-0934 f="http://dx.doi.org/10.1158/0008-5472.CAN-04-0934">CrossRef
    28. Catena R, Larzabal L, Larrayoz M, Molina E, Hermida J, Agorreta J, Montes R, Pio R, Montuenga LM, Calvo A (2010) VEGFb and VEGFb are weakly angiogenic isoforms of VEGF-A. Mol Cancer 9:320. doi:f">10.1186/1476-4598-9-320 f="http://dx.doi.org/10.1186/1476-4598-9-320">CrossRef
    29. Lambert CA, Colige AC, Munaut C, Lapiere CM, Nusgens BV (2001) Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol J Internat Soc Matrix Biol 20(7):397-08 f="http://dx.doi.org/10.1016/S0945-053X(01)00156-1">CrossRef
    30. Hua J, Spee C, Kase S, Rennel ES, Magnussen AL, Qiu Y, Varey A, Dhayade S, Churchill AJ, Harper SJ, Bates DO, Hinton DR (2010) Recombinant human VEGF165b inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 51(8):4282-288. doi:f">10.1167/iovs.09-4360 f="http://dx.doi.org/10.1167/iovs.09-4360">CrossRef
    31. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35(9):3429-435
    32. Penn JS, Rajaratnam VS (2003) Inhibition of retinal neovascularization by intravitreal injection of human rPAI-1 in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 44(12):5423-429 f="http://dx.doi.org/10.1167/iovs.02-0804">CrossRef
    33. Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM (2010) Stromal regulation of vessel stability by MMP14 and TGFbeta. Disease Mod Mech 3(5-):317-32. doi:f">10.1242/dmm.003863 f="http://dx.doi.org/10.1242/dmm.003863">CrossRef
    34. Kawamura H, Li X, Harper SJ, Bates DO, Claesson-Welsh L (2008) Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res 68(12):4683-692. doi:f">10.1158/0008-5472.CAN-07-6577 f="http://dx.doi.org/10.1158/0008-5472.CAN-07-6577">CrossRef
    35. Magnussen AL, Rennel ES, Hua J, Bevan HS, Beazley Long N, Lehrling C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ (2010) VEGF-A165b is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 51(8):4273-281. doi:f">10.1167/iovs.09-4296 f="http://dx.doi.org/10.1167/iovs.09-4296">CrossRef
    36. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. The Journal of biological chemistry 267(36):26031-6037
    37. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, Harper SJ (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62(14):4123-131
    38. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8(11):880-87. doi:f">10.1038/nrc2505 f="http://dx.doi.org/10.1038/nrc2505">CrossRef
    39. Rennel ES, Varey AH, Churchill AJ, Wheatley ER, Stewart L, Mather S, Bates DO, Harper SJ (2009) VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer 101(7):1183-193. doi:f">10.1038/sj.bjc.6605249 f="http://dx.doi.org/10.1038/sj.bjc.6605249">CrossRef
    40. Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21(5):687-90. doi:f">10.1091/mbc.E09-07-0590 f="http://dx.doi.org/10.1091/mbc.E09-07-0590">CrossRef
    41. Muller YA, Heiring C, Misselwitz R, Welfle K, Welfle H (2002) The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor. J Biol Chem 277(45):43410-3416. doi:f">10.1074/jbc.M206438200 f="http://dx.doi.org/10.1074/jbc.M206438200">CrossRef
    42. Iyer S, Acharya KR (2011) Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J 278(22):4304-322. doi:f">10.1111/j.1742-4658.2011.08350.x f="http://dx.doi.org/10.1111/j.1742-4658.2011.08350.x">CrossRef
    43. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85(2):357-68 f="http://dx.doi.org/10.1002/jcb.10140">CrossRef
    44. Grunewald FS, Prota AE, Giese A (1804) Ballmer-Hofer K (2010) Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim Biophys Acta 3:567-80. doi:f">10.1016/j.bbapap.2009.09.002
    45. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5(12):1806-814 f="http://dx.doi.org/10.1210/mend-5-12-1806">CrossRef
    46. Vander Kooi CW, Jusino MA, Perman B, Neau DB, Bellamy HD, Leahy DJ (2007) Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci USA 104(15):6152-157. doi:f">10.1073/pnas.0700043104 f="http://dx.doi.org/10.1073/pnas.0700043104">CrossRef
    47. Liu W, Parikh AA, Stoeltzing O, Fan F, McCarty MF, Wey J, Hicklin DJ, Ellis LM (2005) Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF. Cytokine 32(5):206-12. doi:f">10.1016/j.cyto.2005.09.009 f="http://dx.doi.org/10.1016/j.cyto.2005.09.009">CrossRef
    48. Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerjee SK (2008) VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3?K axis. Biochemistry 47(11):3345-351. doi:f">10.1021/bi8000352 f="http://dx.doi.org/10.1021/bi8000352">CrossRef
  • 作者单位:Romain Delcombel (1)
    Lauriane Janssen (1)
    Roger Vassy (2)
    Melissa Gammons (3)
    Oualid Haddad (4)
    Benjamin Richard (4)
    Didier Letourneur (4)
    David Bates (3)
    Céline Hendricks (1)
    Johannes Waltenberger (5)
    Anna Starzec (2)
    Nor Eddine Sounni (6)
    Agnès No?l (6)
    Christophe Deroanne (1)
    Charles Lambert (1)
    Alain Colige (1)

    1. Laboratory of Connective Tissues Biology, GIGA-R, University of Liège, Avenue de l’H?pital 3, 4000, Liège, Belgium
    2. EA4222, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000, Bobigny, France
    3. Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Preclinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJ, UK
    4. Inserm U698, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000, Bobigny, France
    5. Department of Cardiology and Angiology, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
    6. Laboratory of Tumour and Development Biology, GIGA-R, University of Liège, Avenue de l’H?pital 3, 4000, Liège, Belgium
  • ISSN:1573-7209
文摘
VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the combination of their C-terminal domains, which determines their respective structure, availability and affinity for co-receptors. As controversies still exist about the specific roles of these exon-encoded domains, we systematically compared the properties of eight natural and artificial variants containing the domains encoded by exons 1- and various combinations of the domains encoded by exons 5, 7 and 8a or 8b. All the variants (VEGF111a, VEGF111b, VEGF121a, VEGF121b, VEGF155a, VEGF155b, VEGF165a, VEGF165b) have a similar affinity for VEGF-R2, as determined by Surface plasmon resonance analyses. They strongly differ however in terms of binding to neuropilin-1 and heparin/heparan sulfate proteoglycans. Data indicate that the 6 amino acids encoded by exon 8a must be present and cooperate with those of exons 5 or 7 for efficient binding, which was confirmed in cell culture models. We further showed that VEGF165b has inhibitory effects in vitro, as previously reported, but that the shortest VEGF variant possessing also the 6 amino acids encoded by exon 8b (VEGF111b) is remarkably proangiogenic, demonstrating the critical importance of domain interactions for defining the VEGF properties. The number, size and localization of newly formed blood vessels in a model of tumour angiogenesis strongly depend also on the C-terminal domain composition, suggesting that association of several VEGF isoforms may be more efficient for treating ischemic diseases than the use of any single variant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700