Preparation of CuSbS2 Thin Films by Co-Sputtering and Solar Cell Devices with Band Gap-Adjustable n-Type InGaN as a Substitute of ZnO
详细信息    查看全文
  • 作者:Wei-Liang Chen ; Dong-Hau Kuo ; Thi Tran Anh Tuan
  • 关键词:CuSbS2 ; co ; sputtering ; InGaN ; thin ; film solar cells
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:688-694
  • 全文大小:1,487 KB
  • 参考文献:1.D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, and D.O. Scanlon, J. Phys. Chem. C 116, 7334 (2012).CrossRef <br>2.J.T.R. Dufton, A. Walsh, P.M. Panchmatia, L.M. Peter, D. Colombara, and M.S. Islam, Phys. Chem. Chem. Phys. 14, 7229 (2012).CrossRef <br>3.A. Rabhi, M. Kanzari, and B. Rezig, Mater. Lett. 62, 3576 (2008).CrossRef <br>4.A. Rabhi and M. Kanzari, Chalcogenide Lett. 8, 255 (2011).<br>5.C. Garza, S. Shaji, A. Arato, E.P. Tijerina, G.A. Castillo, T.K. Das Roy, and B. Krishnan, Sol. Energy Mater. Sol. Cells 95, 2001 (2011).CrossRef <br>6.J.V. Embden and Y. Tachibana, J. Mater. Chem. 22, 11466 (2012).CrossRef <br>7.A. Rabhi and M. Kanzari, Chalcogenide Lett. 8, 383 (2011).<br>8.I. Popovici and A. Duta, Int. J. Photoenergy 2012, 962649 (2012).CrossRef <br>9.Y.R. Lazcano, M.T.S. Nair, and P.K. Nair, J. Electrochem. Soc. 152, G635 (2005).CrossRef <br>10.W. Septina, S. Ikeda, Y. Iga, T. Harada, and M. Matsumura, Thin Solid Films 550, 700 (2014).CrossRef <br>11.P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi Rapid Res. Lett. 8, 219 (2014).CrossRef <br>12.W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).<br>13.L.M. Peter, Philos. Trans. R. Soc. A 369, 1840 (2011).CrossRef <br>14.C. Wadia, A.P. Alivisatos, and D.M. Kamen, Environ. Sci. Technol. 43, 2072 (2009).CrossRef <br>15.H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).CrossRef <br>16.K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, and H. Katagiri, Thin Solid Films 515, 5997 (2007).CrossRef <br>17.D. Colombar, L.M. Peter, K.D. Rogers, J.D. Painter, and S. Roncallo, Thin Solid Films 519, 7438 (2011).CrossRef <br>18.H. Tokunaga, H. Tan, Y. Inaishi, T. Arai, A. Yamaguchi, and J. Hidaka, J. Cryst. Growth 221, 616 (2000).CrossRef <br>19.S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, 1332 (1995).CrossRef <br>20.S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).CrossRef <br>21.C.C. Li, D.H. Kuo, P.W. Hsieh, and Y.S. Huang, J. Electron. Mater. 42, 2445 (2013).CrossRef <br>22.C.C. Li and D.H. Kuo, J. Mater. Sci. Mater. Electron. 25, 1404 (2014).CrossRef <br>23.C.C. Li and D.H. Kuo, J. Mater. Sci. Mater. Electron. 25, 1942 (2014).CrossRef <br>24.C.C. Li, D.H. Kuo, and Y.S. Huang, Mater. Sci. Semicond. Process. 29, 170 (2015).CrossRef <br>25.D.H. Kuo and J.T. Hsu, J. Electron. Mater. 43, 2694 (2014).CrossRef <br>26.W. Wubet and D.H. Kuo, Mater. Res. Bull. 53, 290 (2014).CrossRef <br>
  • 作者单位:Wei-Liang Chen (1) <br> Dong-Hau Kuo (1) <br> Thi Tran Anh Tuan (1) <br><br>1. Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan <br>
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry<br>Optical and Electronic Materials<br>Characterization and Evaluation Materials<br>Electronics, Microelectronics and Instrumentation<br>Solid State Physics and Spectroscopy<br>
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
CuSbSb>2b> films were fabricated by co-sputtering with the (Cu + Sbb>2b>Sb>3b>) target at powers of 50 W, 55 W, and 60 W and a Cu target at 2 W under the deposition temperature of 300°C for 2 h, followed by annealing at 350–450°C for 1 h under a Sbb>2b>Sb>3b> compensation disc to avoid the sulfur deficiency. The (Cu + Sbb>2b>Sb>3b>) cermet target with the composition of Cu:Sbb>2b>Sb>3b> = 2:1 was formed by hot pressing. The effects of processing conditions on the growth behavior, microstructural characteristics, and electrical properties of CuSbSb>2b> films were investigated. X-ray diffractometry showed that the films prepared by the (Cu + Sbb>2b>Sb>3b>) target at 50 W and 55 W were single phases. The peaks located at 28.4°, 28.7°, and 29.9° were contributed from the (111), (410), and (301) diffraction peaks, respectively. The film prepared with the (Cu + Sbb>2b>Sb>3b>) target at 60 W was Cu rich and had a high electrical conductivity of 180 S cm−1. The 55 W-deposited film was Cu stoichiometric and had low electrical conductivity of 0.05 S cm−1. The 50 W-deposited film with electrical conductivity of 0.24 S cm−1 was good for use as a solar cell device. The solar cell devices made of the p-CuSbSb>2b>/n-ZnO system had an efficiency of 0.16%, while it was 0.76% for the p-CuSbSb>2b>/n-Inb>0.3b>Gab>0.7b>N system with the InGaN made by reactive sputtering at 200°C instead of metal–organic chemical vapor deposition above 750°C. This replacement with InGaN for a solar cell device has led to a 4.75-fold increase in efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700