Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations
详细信息    查看全文
  • 作者:Lei Su (1) (2)
    Liang Tang (1) (2)
    Xian-zhang Ling (1)
    Neng-pan Ju (2)
    Xia Gao (1)
  • 关键词:Liquefaction ; Dynamic behavior ; Pile group effect ; Pile group ; Shake ; table experiment ; TU473.1 ; 娑插寲 ; 鍔ㄥ姏鍙嶅簲 ; 缇ゆ々鏁堝簲 ; 涓瘑鐮?/li> 瀵嗙爞 ; 鎸姩鍙拌瘯楠?/li>
  • 刊名:Journal of Zhejiang University - Science A
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:16
  • 期:2
  • 页码:93-104
  • 全文大小:1,479 KB
  • 参考文献:1. Abdoun, T., 1997. Modeling of Seismically Induced Lateral Spreading of Multi-layered Soil and Its Effect on Pile Foundations. PhD Thesis, Rensselaer Polytechnic Institute, Troy, New York.
    2. Ashford, S.A., Juirnarongrit, T., Sugano, T., / et al., 2006. Soil-pile response to blast-induced lateral spreading. I: field test. / Journal of Geotechnical and Geoenvironmental Engineering, 132(2):152鈥?62. [doi:10.1061/(ASCE)1090-0241(2006)132:2(152)]
    3. Audemard M., F.A., G贸mez, J.C., Tavera, H.J., / et al., 2005. Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru. / Engineering Geology, 78(3鈥?):237鈥?55. [doi:10.1016/j.enggeo.2004.12.007] CrossRef
    4. Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., / et al., 2005. Behavior of pile foundations in laterally spreading ground during centrifuge tests. / Journal of Geotechnical and Geoenvironmental Engineering, 131(11):1378鈥?391. [doi:10. 1061/(ASCE)1090-0241(2005)131:11(1378)] CrossRef
    5. Chau, K.T., Shen, C.Y., Guo, X., 2009. Nonlinear seismic soil-pile-structure interactions: shaking table tests and FEM analyses. / Soil Dynamics and Earthquake Engineering, 29(2):300鈥?10. [doi:10.1016/j.soildyn.2008.02.004] CrossRef
    6. Cubrinovski, M., Uzuoka, R., Sugita, H., / et al., 2008. Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow. / Soil Dynamics and Earthquake Engineering, 28(6):421鈥?35. [doi:10.1016/j.soildyn.2007.10.015] CrossRef
    7. Dash, S.R., Govindaraju, L., Bhattacharya, S., 2009. A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake. / Soil Dynamics and Earthquake Engineering, 29(2):333鈥?46. [doi:10.1016/j.soildyn.2008.03.004] CrossRef
    8. Gao, X., Ling, X.Z., Tang, L., / et al., 2011. Soil-pile-bridge structure interaction in liquefying ground using shake table testing. / Soil Dynamics and Earthquake Engineering, 31(7):1009鈥?017. [doi:10.1016/j.soildyn.2011.03.007] CrossRef
    9. Gonz谩lez, L., Abdoun, T., Dobry, R., 2009. Effect of soil permeability on centrifuge modeling of pile response to lateral spreading. / Journal of Geotechnical and Geoenvironmental Engineering, 135(1):62鈥?3. [doi:10.1061/(ASCE)1090-0241(2009)135:1(62)] CrossRef
    10. Haigh, S.K., Madabhushi, S.P.G., 2011. Centrifuge modelling of pile-soil interaction in liquefiable slopes. / Geomechanics and Engineering, 3(1):1鈥?6. [doi:10.12989/gae.2011.3.1.001] CrossRef
    11. Kirupakaran, K., Cerato, A., Liu, C., / et al., 2010. Simulation of a centrifuge model test of pile foundations in CDSM improved soft clays. Proceedings of GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, Florida, USA, p.1583鈥?591. [doi:10.1061/41095(365)160] CrossRef
    12. Knappett, J.A., Madabhushi, S.P.G., 2008. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils. / Journal of Geotechnical and Geoenvironmental Engineering, 134(11):1609鈥?618. [doi:10.1061/(ASCE)1090-0241(2008)134:11(1609)] CrossRef
    13. Kutter, B., Gajan, S., Manda, K., / et al., 2004. Effects of layer thickness and density on settlement and lateral spreading. / Journal of Geotechnical and Geoenvironmental Engineering, 130(6):603鈥?14. [doi:10.1061/(ASCE)1090-0241(2004)130:6(603)] CrossRef
    14. Liu, C., Soltani, H., Pinilla, J., / et al., 2011. Centrifuge investigation of seismic behavior of pile foundations in soft clays. Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, Texas, USA, p.585鈥?94. [doi:10.1061/41165(397)61] CrossRef
    15. Lombardi, D., Bhattacharya, S., 2014. Modal analysis of pile-supported structures during seismic liquefaction. / Earthquake Engineering & Structural Dynamics, 43(1):119鈥?38. [doi:10.1002/eqe.2336] CrossRef
    16. Motamed, R., Towhata, I., 2010. Shaking table model tests on pile groups behind quay walls subjected to lateral spreading. / Journal of Geotechnical and Geoenvironmental Engineering, 136(3):477鈥?89. [doi:10.1061/(ASCE)GT.1943-5606.0000115] CrossRef
    17. Palermo, A., Wotherspoon, L., Wood, J., / et al., 2011. Lessons learnt from 2011 Christchurch earthquakes: analysis and assessment of bridges. / Bulletin of the New Zealand Society for Earthquake Engineering, 44(4):319鈥?33.
    18. Rollins, K.M., Gerber, T.M., Lane, J.D., / et al., 2005. Lateral resistance of a full-scale pile group in liquefied sand. / Journal of Geotechnical and Geoenvironmental Engineering, 131(1):115鈥?25. [doi:10.1061/(ASCE)1090-0241(2005)131:1(115)] CrossRef
    19. Sonmez, B., Ulusay, R., Sonmez, H., 2008. A study on the identification of liquefaction-induced failures on ground surface based on the data from the 1999 Kocaeli and Chi-Chi earthquakes. / Engineering Geology, 97(3鈥?):112鈥?25. [doi:10.1016/j.enggeo.2007.12.008] CrossRef
    20. Sugimura, Y., Karkee, M.B., Mitsuji, K., 2004. An investigation on aspects of damage to precast concrete piles due to the 1995 Hyogoken-Nambu earthquake. Proceedings Third UJNR Workshop on Soil-structure Interaction, Menlo Park, California, USA, p.1鈥?6.
    21. Tang, L., Ling, X.Z., Xu, P.J., / et al., 2010. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground. / Earthquake Engineering and Engineering Vibration, 9(1):39鈥?0. [doi:10.1007/s11803-009-8131-7] CrossRef
    22. Tokimatsu, K., Suzuki, H., Sato, M., 2005. Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation. / Soil Dynamics and Earthquake Engineering, 25(7鈥?0):753鈥?62. [doi:10.1016/j.soildyn.2004.11.018] CrossRef
    23. Uzuoka, R., Cubrinovski, M., Sugita, H., / et al., 2008. Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction perpendicular to ground flow. / Soil Dynamics and Earthquake Engineering, 28(6):436鈥?52. [doi:10.1016/j.soildyn.2007.08.007] CrossRef
    24. Weaver, T.J., Ashford, S.A., Rollins, K.M., 2005. Response of 0.6 m cast-in-steel-shell pile in liquefied soil under lateral loading. / Journal of Geotechnical and Geoenvironmental Engineering, 131(1):94鈥?02. [doi:10.1061/(ASCE)1090-0241(2005)131:1(94)] CrossRef
    25. Wilson, D.W., 1998. Soil-pile-superstructure Interaction in Liquefying Sand and Soft Clay. PhD Thesis, University of California, Davis, California.
    26. Wilson, D.W., Boulanger, R.W., Kutter, B.L., 2000. Observed seismic lateral resistance of liquefying sand. / Journal of Geotechnical and Geoenvironmental Engineering, 126(10):898鈥?06. [doi:10.1061/(ASCE)1090-0241(2000)126:10(898)] CrossRef
    27. Wotherspoon, L.M., Pender, M.J., Orense, R.P., 2012. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. / Engineering Geology, 125:45鈥?5. [doi:10.1016/j.enggeo.2011.11.001] CrossRef
    28. Yao, S., Kobayashi, K., Yoshida, N., / et al., 2004. Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests. / Soil Dynamics and Earthquake Engineering, 24(5):397鈥?09. [doi:10.1016/j.soildyn.2003.12.003] CrossRef
    29. Yen, P., Chen, G., Buckle, I., / et al., 2011. Bridge performance during the 2010 M8.8 Chile Earthquake. Structures Congress 2011, Las Vegas, Nevada, USA, p.1649鈥?659. [doi:10.1061/41171(401)144] CrossRef
    30. Zong, Z.H., Zhou, R., Huang, X.Y., / et al., 2014. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests. / Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(5):351鈥?63. [doi:10.1631/jzus.A1300339] CrossRef
  • 作者单位:Lei Su (1) (2)
    Liang Tang (1) (2)
    Xian-zhang Ling (1)
    Neng-pan Ju (2)
    Xia Gao (1)

    1. School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China
    2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Chinese Library of Science
  • 出版者:Zhejiang University Press, co-published with Springer
  • ISSN:1862-1775
文摘
During earthquakes, the response of pile foundations in liquefiable sand reinforced by densification techniques is still a very complex dynamic soil-structure interaction problem. Two shake-table experiments were conducted to investigate the behavior of a reinforced concrete (RC) low-cap pile group embedded in liquefiable soils. Discussion is focused on the behavior of soil-pile-superstructure systems prior to and during liquefaction of the medium-dense and dense sand stratums, which are involved in restoring force characteristics at the superstructure and pile group effect. The test results demonstrated a stiffness reduction and dependent nonlinear behavior appearing in the liquefied medium-dense sand; however, an overall stiffening response was observed in liquefied dense sand. The pile group effect seemed insignificant in liquefied medium-dense sand, but was very significant in the liquefied dense sand.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700