Multi-type Entire Solutions in a Nonlocal Dispersal Epidemic Model
详细信息    查看全文
  • 作者:Li Zhang ; Wan-Tong Li ; Shi-Liang Wu
  • 关键词:Entire solutions ; Nonlocal dispersal ; Epidemic model ; Traveling wave solutions ; Asymptotic behavior ; 35K57 ; 37C65 ; 92D30
  • 刊名:Journal of Dynamics and Differential Equations
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:28
  • 期:1
  • 页码:189-224
  • 全文大小:747 KB
  • 参考文献:1.Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems, Mathematical Surveys and Monographs. AMS, Providence (2010)CrossRef
    2.Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Brunner, H., Zhao, X.Q., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48, pp. 13–52. AMS, Providence (2006)
    3.Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)CrossRef MathSciNet
    4.Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)CrossRef MathSciNet
    5.Capasso, V.: Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath, vol. 97. Springer-Verlag, Heidelberg (1993)CrossRef
    6.Capasso, V., Kunisch, K.: A reaction-diffusion system arising in modelling man-environment diseases. Q. Appl. Math. 46, 431–450 (1988)MathSciNet
    7.Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981)CrossRef MathSciNet
    8.Capasso, V., Maddalena, L.: Saddle point behavior for a reaction-diffusion system: application to a class of epidemic models. Math. Comput. Simul. 24, 540–547 (1982)CrossRef MathSciNet
    9.Capasso, V., Paveri-Fontana, S.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Revue d’Epidemical. et de Santé Publique. 27, 121–132 (1979)
    10.Coville, J., Dupaigne, L.: On a nonlocal reaction-diffusion eqution arising in population dynamics. Proc. R. Soc. Edinburgh 137A, 727–755 (2007)CrossRef MathSciNet
    11.Crooks, E.C.M., Tsai, J.C.: Front-like entire solutions for equations with convection. J. Differ. Equ. 253, 1206–1249 (2012)CrossRef MathSciNet
    12.Chen, X.: Existence, uniqueness and asymptotical stability of travelling fronts in non-local evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)
    13.Chen, X., Guo, J.S.: Existence and uniqueness of entire solutions for a reaction-diffusion equation. J. Differ. Equ. 212, 62–84 (2005)CrossRef
    14.Chen, X., Guo, J.S., Ninomiya, H.: Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity. Proc. R. Soc. Edinburgh 136A, 1207–1237 (2006)CrossRef MathSciNet
    15.Ermentrout, B., Mcleod, J.: Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh 123A, 461–478 (1994)MathSciNet
    16.Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 7, 173–213 (2005)
    17.Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)CrossRef MathSciNet
    18.Fukao, Y., Morita, Y., Ninomiya, H.: Some entire solutions of the Allen–Cahn equation. Taiwan. J. Math. 8, 15–32 (2004)MathSciNet
    19.Gourley, S.A., Wu, J.: Delayed nonlocal diffusive systems in biological invasion and disease spread. Fields Inst. Commun. 48, 137–200 (2006)MathSciNet
    20.Guo, J.S., Morita, Y.: Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discret. Contin. Dyn. Syst. 12, 193–212 (2005)MathSciNet
    21.Guo, J.S., Wu, C.H.: Entire solutions for a two-component competition system in a lattice. Tohoku Math. J. 62, 17–28 (2010)CrossRef MathSciNet
    22.Hamel, F., Nadirashvili, N.: Entire solution of the KPP eqution. Commun. Pure Appl. Math. 52, 1255–1276 (1999)CrossRef MathSciNet
    23.Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \(R^{N}\) . Arch. Ration. Mech. Anal. 157, 91–163 (2001)CrossRef MathSciNet
    24.Kao, C.Y., Lou, Y., Shen, W.: Random dispersal vs non-local dispersal. Discret. Contin. Dyn. Syst. 26, 551–596 (2010)MathSciNet
    25.Lee, C.T., et al.: Non-local concepts in models in biology. J. Theor. Biol. 210, 201–219 (2001)CrossRef
    26.Li, W.T., Sun, Y.J., Wang, Z.C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)CrossRef MathSciNet
    27.Li, W.T., Wang, Z.C., Wu, J.: Entire solutions in monostable reaction-diffusion eqautions with delayed nonlinearity. J. Differ. Equ. 245, 102–129 (2008)CrossRef MathSciNet
    28.Li, W.T., Liu, N.W., Wang, Z.C.: Entire solutions in reaction-advection-diffusion equations in cylinders. J. Math. Pures Appl. 90, 492–504 (2008)CrossRef MathSciNet
    29.Li, W.T., Zhang, L., Zhang, G.B. : Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. 35, 1531–1560 (2015)
    30.Liu, N.W., Li, W.T., Wang, Z.C.: Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders. J. Differ. Equ. 246, 4249–4267 (2009)CrossRef MathSciNet
    31.Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction-diffusion equations. Trans. Am. Math. Soc. 321, 1–44 (1990)MathSciNet
    32.Morita, Y., Ninomiya, H.: Entire solutions with merging fronts to reaction-diffusion equations. J. Dyn. Diff. Eqns. 18, 841–861 (2006)CrossRef MathSciNet
    33.Morita, Y., Tachibana, K.: An entire solution to the Lotka–Volterra competition-diffusion equations. SIAM J. Math. Anal. 40, 2217–2240 (2009)CrossRef MathSciNet
    34.Murray, J.: Mathematical Biology, 3rd edn. Springer, Berlin, Heidelberg, New York (1993)CrossRef
    35.Pan, S., Li, W.T., Lin, G.: Travelling wave fronts in nonlocal reaction-diffusion systems and applications. Z. Angew. Math. Phys. 60, 377–392 (2009)CrossRef MathSciNet
    36.Roquejoffre, J.M.: Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 499–552 (1997)CrossRef MathSciNet
    37.Schumacher, K.: Traveling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)MathSciNet
    38.Sun, Y.J., Li, W.T., Wang, Z.C.: Entire solutions in nonlocal dispersal equations with bistable nonlinearity. J. Differ. Equ. 251, 551–581 (2011)CrossRef MathSciNet
    39.Wang, M., Lv, G.: Entire solutions of a diffusion and competitive Lotka–Volterra type system with nonlocal delayed. Nonlinearity 23, 1609–1630 (2010)CrossRef MathSciNet
    40.Wang, Z.C., Li, W.T., Ruan, S.: Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity. Trans. Am. Math. Soc. 361, 2047–2084 (2009)CrossRef MathSciNet
    41.Wang, Z.C., Li, W.T., Wu, J.: Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal. 40, 2392–2420 (2009)CrossRef MathSciNet
    42.Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)CrossRef MathSciNet
    43.Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)
    44.Wu, S.L.: Entire solutions in a bistable reaction-diffusion system modeling man-environment-man epidemics. Nonlinear Anal. Real World Appl. 13, 1991–2005 (2012)CrossRef MathSciNet
    45.Wu, S.L., Wang, H.Y.: Front-like entire solutions for monostable reaction-diffusion systems. J. Dyn. Differ. Equ. 25, 505–533 (2013)CrossRef
    46.Wu, S.L., Sun, Y.J., Liu, S.Y.: Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discret. Contin. Dyn. Syst. 33, 921–946 (2013)CrossRef MathSciNet
    47.Xu, D., Zhao, X.Q.: Erratum to Bistable waves in an epidemic model. J. Dyn. Differ. Equ. 17, 219–247 (2005)CrossRef
    48.Yagisita, H.: Back and global solutions characterizing annihilation dynamics of traveling fronts. Publ. Res. Inst. Math. Sci. 39, 117–164 (2003)CrossRef MathSciNet
    49.Yu, Z., Yuan, R.: Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications. ANZIAM. J. 51, 49–66 (2009)CrossRef MathSciNet
    50.Yu, Z., Yuan, R.: Existence and asymptotics of traveling waves for nonlocal diffusion systems. Chaos Solitons Fractals 45, 1361–1367 (2012)CrossRef MathSciNet
    51.Zhao, X.Q., Wang, W.: Fisher waves in an epidemic model. Discret. Contin. Dyn. Syst. 4B, 1117–1128 (2004)CrossRef
  • 作者单位:Li Zhang (1)
    Wan-Tong Li (1)
    Shi-Liang Wu (2)

    1. School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, Gansu, People’s Republic of China
    2. School of Mathematics and Statistics, Xidian University, Xi’an, 710071, Shaanxi, People’s Republic of China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Ordinary Differential Equations
    Partial Differential Equations
    Applications of Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1572-9222
文摘
This paper deals with entire solutions of a nonlocal dispersal epidemic model. Unlike local (random) dispersal problems, a nonlocal dispersal operator is not compact and the solutions of nonlocal dispersal system studied here lack regularity in suitable spaces, which affects the uniform convergence of the solution sequences and the technique details in constructing the entire solutions. In the monostable case, some new types of entire solutions are constructed by combining leftward and rightward traveling fronts with different speeds and a spatially independent solution. In the bistable case, the existence of many different entire solutions with merging fronts are proved by constructing different sub- and super-solutions. Various qualitative features of the entire solutions are also investigated. A key idea is to characterize the asymptotic behaviors of the traveling wave solutions at infinite in terms of appropriate sub- and super-solutions. Finally, we also obtain the smoothness of the entire solutions in space, i.e., the solutions established in our paper are global Lipschitz continuous in space. Keywords Entire solutions Nonlocal dispersal Epidemic model Traveling wave solutions Asymptotic behavior

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700