Cytoprotection of Perfluorocarbon on PMVECs In Vitro
详细信息    查看全文
  • 作者:Shufeng Xu (1) (2)
    Ping Wang (1)
    Kun Wei (2)
    Fengsui Liu (2)
    Zhixin Liang (1)
    Xiaowei Zhao (1)
    Aimin Li (3)
    Liangan Chen (1)
  • 关键词:perfluorocarbon ; lipopolysaccharide ; TLR ; 4 ; NF ; κB ; pulmonary vascular endothelial cells
  • 刊名:Inflammation
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:36
  • 期:2
  • 页码:512-520
  • 全文大小:578KB
  • 参考文献:1. Li, H., S. Du, L. Yang, Y. Chen, W. Huang, R. Zhang, / et al. 2009. Rapid pulmonary fibrosis induced by acute lung injury / via a lipopolysaccharide three-hit regimen. / Innate Immunity 15: 143-54. CrossRef
    2. Chi, X.J., J. Cai, C.F. Luo, N. Cheng, Z.Q. Hei, S.R. Li, / et al. 2009. Relationship between the expression of Toll-like receptor 2 and 4 in mononuclear cells and postoperative acute lung injury in orthotopic liver transplantation. / Chinese Medical Journal 122: 895-99.
    3. Wang, D., J. Lou, C. Ouyang, W. Chen, Y. Liu, X. Liu, / et al. 2010. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. / Proceedings of the National Academy of Sciences of the United States of America 107: 13806-3811. CrossRef
    4. Lorne, E., H. Dupont, and E. Abraham. 2010. Toll-like receptors 2 and 4: Initiators of non-septic inflammation in critical care medicine? / Intensive Care Medicine 36: 1826-835. CrossRef
    5. Dauphinee, S.M., and A. Karsan. 2006. Lipopolysaccharide signaling in endothelial cells. / Laboratory Investigation 86: 9-2. CrossRef
    6. Blank, R., and L.M. Napolitano. 2011. Epidemiology of ARDS and ALI. / Critical Care Clinics 27: 439-58. CrossRef
    7. Peter, J.V., P. John, P.L. Graham, J.L. Moran, I.A. George, A. Bersten, / et al. 2008. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis. / BMJ 336: 1006-009. CrossRef
    8. Shashikant, B.N., T.L. Miller, M.J. Jeng, J. Davis, T.H. Shaffer, M.R. Wolfson, / et al. 2005. Differential impact of perfluorochemical physical properties on the physiologic, histologic, and inflammatory profile in acute lung injury. / Critical Care Medicine 33: 1096-103. CrossRef
    9. von der Hardt, K., E. Schoof, M.A. Kandler, J. D?tsch, and W. Rascher. 2002. Aerosolized perfluorocarbon suppresses early pulmonary inflammatory response in a surfactant depleted piglet model. / Pediatric Research 51: 177-82. CrossRef
    10. Qin, X., and Y.N. Liu. 2007. Effect of vaporized perfluorocarbon inspiration on cell apoptosis of intestine mucosa: Experiment with pigs with acute lung injury. / Zhonghua Yi Xue Za Zhi 87: 493-96.
    11. Chang, H., F.C. Kuo, Y.S. Lai, and T.C. Chou. 2005. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. / Intensive Care Medicine 31: 977-84. CrossRef
    12. Gale, S.C., G.D. Gorman, J.G. Copeland, and P.F. McDonagh. 2007. Perflubron emulsion prevents PMN activation and improves myocardial functional recovery after cold ischemia and reperfusion. / Journal of Surgical Research 138: 135-40. CrossRef
    13. Lou, J.N., N. Mili, C. Decrind, Y. Donati, S. Kossodo, A. Spiliopoulos, / et al. 1998. An improved method for isolation of microvascular endothelial cells from normal and inflamed human lung. / In Vitro Cellular & Developmental Biology. Animal 4: 529-36. CrossRef
    14. Kim, N.S., and S.J. Kim. 1991. Isolation and cultivation of microvascular endothelial cells from rat lungs: Effects of gelatin substratum and serum. / Yonsei Medical Journal 32: 303-14.
    15. Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. / Nature Protocols 3: 1101-108. CrossRef
    16. Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, / et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. / Science 282: 2085-088. CrossRef
    17. Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. / Journal of Biological Chemistry 274: 10689-0692. CrossRef
    18. Bosma, K.J., and J.F. Lewis. 2007. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. / Expert Opinion on Emerging Drugs 12: 461-77. CrossRef
    19. Babu, P.B., A. Chidekel, and T.H. Shaffer. 2005. Hyperoxia-induced changes in human airway epithelial cells: The protective effect of perflubron. / Pediatric Critical Care Medicine 6: 188-94. CrossRef
    20. von der Hardt, K., M.A. Kandler, L. Fink, E. Schoof, J. Dotsch, R.M. Bohle, / et al. 2003. Laser-assisted microdissection and real-time PCR detect anti-inflammatory effect of perfluorocarbon. / American Journal of Physiology. Lung Cellular and Molecular Physiology 285: L55–L62.
    21. Nakata, S., K. Yasui, T. Nakamura, N. Kubota, and A. Baba. 2007. Perfluorocarbon suppresses lipopolysaccharide- and alpha-toxin-induced interleukin-8 release from alveolar epithelial cells. / Neonatology 91: 127-33. CrossRef
    22. Rotta, A.T., B. Gunnarsson, B.P. Fuhrman, B. Wiryawan, L.J. Hernan, and D.M. Steinhorn. 2003. Perfluorooctyl bromide (perflubron) attenuates oxidative injury to biological and nonbiological systems. / Pediatric Critical Care Medicine 4: 233-38. CrossRef
    23. Wissel, H., W. Burkhardt, J. Rupp, R.R. Wauer, and M. Rüdiger. 2006. Perfluorocarbons decrease / Chlamydophila pneumoniae-mediated inflammatory responses of rat type II pneumocytes in vitro. / Pediatric Research 60: 264-69. CrossRef
    24. Haufe, D., T. Luther, M. Kotzsch, L. Knels, and T. Koch. 2004. Perfluorocarbon attenuates response of concanavalin A-stimulated mononuclear blood cells without altering ligand-receptor interaction. / American Journal of Physiology. Lung Cellular and Molecular Physiology 287: L210–L216. CrossRef
    25. Rüdiger, M., H. Wissel, M. Ochs, W. Burkhardt, H. Proquitté, R.R. Wauer, / et al. 2003. Perfluorocarbons are taken up by isolated type II pneumocytes and influence its liquid synthesis and secretion. / Critical Care Medicine 31: 1190-196. CrossRef
  • 作者单位:Shufeng Xu (1) (2)
    Ping Wang (1)
    Kun Wei (2)
    Fengsui Liu (2)
    Zhixin Liang (1)
    Xiaowei Zhao (1)
    Aimin Li (3)
    Liangan Chen (1)

    1. Department of Pulmonary Medicine, Chinese People’s Liberation Army General Hospital, Beijing, 100853, People’s Republic of China
    2. Department of Respiratory Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
    3. Department of Respiratory Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
  • ISSN:1573-2576
文摘
Lipopolysaccharide (LPS) can activate endothelial cells and induce inflammatory injury. Toll-like receptor-4 (TLR-4) is integrally involved in LPS signaling and has a requisite role in the activation of nuclear factor (NF)-κB. A number of studies have demonstrated the cytoprotective action of perfluorocarbon (PFC) both in vivo and in vitro, but the exact mechanisms have yet to be elucidated. In this study, we examined in an in vitro model the cytoprotective effect of PFC on LPS-stimulated pulmonary vascular endothelial cells (PMVECs). Intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) were significantly increased in the LPS-stimulated PMVECs groups. The expression of TLR-4 mRNA and protein in LPS groups was markedly increased. Meanwhile, NF-κB was activated. There were no significant effects of PFC alone on any of the factors studied while the coculture group showed significant downregulation of the secretion of ICAM-1, TNF-α, and IL-8; the expression of TLR-4 mRNA; and the activity of NF-κB. LPS can induce PMVEC inflammatory injury via the activation of TLR-4 and subsequent activation of NF-κB. PFC is able to protect PMVECs from LPS-induced inflammatory injury by blocking the initiation of the LPS signaling pathway.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700