An integrated genomic and metabolomic framework for cell wall biology in rice
详细信息    查看全文
  • 作者:Kai Guo (10) (12) (9)
    Weihua Zou (10) (11) (9)
    Yongqing Feng (10) (11) (9)
    Mingliang Zhang (10) (11) (9)
    Jing Zhang (10) (11) (9)
    Fen Tu (10) (12) (9)
    Guosheng Xie (10) (11) (9)
    Lingqiang Wang (10) (11) (9)
    Yangting Wang (10) (11) (9)
    Sebastian Klie (13)
    Staffan Persson (10) (11) (13) (14)
    Liangcai Peng (10) (11) (12) (9)

    10. Biomass and Bioenergy Research Centre
    ; Huazhong Agricultural University ; Wuhan ; Hubei ; 430070 ; P. R. China
    12. College of Life Science and Technology
    ; Huazhong Agricultural University ; Wuhan ; Hubei ; 430070 ; P. R. China
    9. National Key Laboratory of Crop Genetic Improvement
    ; Huazhong Agricultural University ; Wuhan ; Hubei ; 430070 ; P. R. China
    11. College of Plant Science and Technology
    ; Huazhong Agricultural University ; Wuhan ; Hubei ; 430070 ; P. R. China
    13. Max-Planck-Institute for Molecular Plant Physiology
    ; Am M眉hlenberg 1 ; 14476 ; Potsdam ; Germany
    14. School of Botany
    ; University of Melbourne ; Melbourne ; VIC ; 3010 ; Australia
  • 关键词:Rice ; Cell wall ; Co ; expression network ; Metabolomics
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,314 KB
  • 参考文献:1. Lee, I, Ambaru, B, Thakkar, P, Marcotte, EM, Rhee, SY (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28: pp. 149-156 CrossRef
    2. Lee, HK, Hsu, AK, Sajdak, J, Qin, J, Pavlidis, P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14: pp. 1085-1094 CrossRef
    3. Persson, S, Wei, H, Milne, J, Page, GP, Somerville, CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 102: pp. 8633-8638 CrossRef
    4. Stuart, JM, Segal, E, Koller, D, Kim, SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: pp. 249-255 CrossRef
    5. Ruprecht, C, Mutwil, M, Saxe, F, Eder, M, Nikoloski, Z, Persson, S (2011) Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Front Plant Sci 2: pp. 23 CrossRef
    6. Atias, O, Chor, B, Chamovitz, D (2009) Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network. BMC Syst Biol 3: pp. 86 CrossRef
    7. Mao, L, Van Hemert, JL, Dash, S, Dickerson, JA (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10: pp. 346 CrossRef
    8. Mentzen, WI, Peng, J, Ransom, N, Nikolau, BJ, Wurtele, ES (2008) Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis leucine catabolism and starch metabolism. BMC Plant Biol 8: pp. 76 CrossRef
    9. Mutwil, M, Usadel, B, Sch眉tte, M, Loraine, A, Ebenh枚h, O, Persson, S (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152: pp. 29-43 CrossRef
    10. Wang, Y, Hu, Z, Yang, Y, Chen, X, Chen, G (2009) Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. Int J Mol Sci 10: pp. 116-132 CrossRef
    11. Wei, H, Persson, S, Mehta, T, Srinivasasainagendra, V, Chen, L, Page, GP, Somerville, CR, Loraine, A (2006) Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 142: pp. 762-774 CrossRef
    12. Faccioli, P, Provero, P, Herrmann, C, Stanca, A, Morcia, C, Terzi, V (2005) From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 58: pp. 739-750 CrossRef
    13. Ficklin, SP, Luo, F, Feltus, FA (2010) The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant Physiol 154: pp. 13-24 CrossRef
    14. Lee, TH, Kim, YK, Pham, TTM, Song, SI, Kim, JK, Kang, KY, An, G, Jung, KH, Galbraith, DW, Kim, M (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling and its application to the analysis of coexpressed genes in rice. Plant Physiol 151: pp. 16-33 CrossRef
    15. Ogata, Y, Suzuki, H, Sakurai, N, Shibata, D (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26: pp. 1267-1268 CrossRef
    16. Edwards, KD, Bombarely, A, Story, GW, Allen, F, Mueller, LA, Coates, SA, Jones, L (2010) TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics 11: pp. 142 CrossRef
    17. Ficklin, SP, Feltus, FA (2011) Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol 156: pp. 1244-1256 CrossRef
    18. Manfield, IW, Jen, CH, Pinney, JW, Michalopoulos, I, Bradford, JR, Gilmartin, PM, Westhead, DR (2006) Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34: pp. W504-W509 CrossRef
    19. Obayashi, T, Hayashi, S, Saeki, M, Ohta, H, Kinoshita, K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37: pp. D987-D991 CrossRef
    20. Vandepoele, K, Quimbaya, M, Casneuf, T, De Veylder, L, Van de Peer, Y (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150: pp. 535-546 CrossRef
    21. Mutwil, M, Klie, S, Tohge, T, Giorgi, FM, Wilkins, O, Campbell, MM, Fernie, AR, Usadel, B, Nikoloski, Z, Persson, S (2011) PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23: pp. 895-910 CrossRef
    22. Higashi, Y, Saito, K (2013) Network analysis for gene discovery inplant specialized metabolism. Plant Cell Environ 36: pp. 1587-1606 CrossRef
    23. Somerville, CR, Bauer, S, Brininstool, G, Facette, M, Hamann, T, Milne, J, Osborne, E, Paredez, A, Persson, S, Raab, T (2004) Toward a systems approach to understanding plant cell walls. Science 306: pp. 2206-2211 CrossRef
    24. Zhang, W, Yi, Z, Huang, J, Li, F, Hao, B, Li, M, Hong, S, Lv, Y, Sun, W, Arthur, R, Hu, F, Peng, J, Peng, L (2013) Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol 130: pp. 30-37 CrossRef
    25. Smook, GA (1992) Handbook for Pulp and Paper Technologists. Angus Wilde Publications, Vancouver
    26. Scheller, HV, Ulvskov, P (2010) Hemicelluloses. Annu Rev Plant Biol 61: pp. 263-289 CrossRef
    27. Zhao, Q, Dixon, RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought?. Trends Plant Sci 16: pp. 227-233 CrossRef
    28. Sun, H, Li, Y, Feng, S, Zou, W, Guo, K, Fan, C, Si, S, Peng, L (2012) Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 430: pp. 1151-1156 CrossRef
    29. Carpita, N, Tierney, M, Campbell, M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure architecture and dynamics. Plant Mol Biol 47: pp. 1-5 CrossRef
    30. Torney, F, Moeller, L, Scarpa, A, Wang, K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18: pp. 193-199 CrossRef
    31. Xie, G, Peng, L (2011) Genetic engineering of energy crops: a strategy for biofuel production in China. J Integr Plant Biol 53: pp. 143-150 CrossRef
    32. Turner, SR, Somerville, CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: pp. 689-701 CrossRef
    33. Arioli, T, Peng, L, Betzner, AS, Burn, J, Wittke, W, Herth, W, Camilleri, C, H枚fte, H, Plazinski, J, Birch, R (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: pp. 717-720 CrossRef
    34. Taylor, NG, Scheible, WR, Cutler, S, Somerville, CR, Turner, SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: pp. 769-779 CrossRef
    35. Taylor, NG, Laurie, S, Turner, SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: pp. 2529-2539 CrossRef
    36. Burk, DH, Liu, B, Zhong, R, Morrison, WH, Ye, Z (2001) A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation. Plant Cell 13: pp. 807-827 CrossRef
    37. Peng, L, Kawagoe, Y, Hogan, P, Delmer, D (2002) Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295: pp. 147-150 CrossRef
    38. Zhong, R, Burk, DH, Morrison, WH, Ye, Z (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14: pp. 3101-3117 CrossRef
    39. Brown, DM, Zeef, LAH, Ellis, J, Goodacre, R, Turner, SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: pp. 2281-2295 CrossRef
    40. Brown, DM, Goubet, F, Wong, VW, Goodacre, R, Stephens, E, Dupree, P, Turner, SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52: pp. 1154-1168 CrossRef
    41. Li, A, Xia, T, Xu, W, Chen, T, Li, X, Fan, J, Wang, R, Feng, S, Wang, Y, Wang, B, Peng, L (2013) An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 237: pp. 1585-1597 CrossRef
    42. Wang, L, Guo, K, Li, Y, Tu, Y, Hu, H, Wang, B, Cui, X, Peng, L (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10: pp. 282 CrossRef
    43. Xie, G, Yang, B, Xu, Z, Li, F, Guo, K, Zhang, M, Wang, L, Zou, W, Wang, Y, Peng, L (2013) Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One 8: pp. e50171 CrossRef
    44. Wang, L, Xie, W, Chen, Y, Tang, W, Yang, J, Ye, R, Liu, L, Lin, Y, Xu, C, Xiao, J, Zhang, Q (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61: pp. 752-766 CrossRef
    45. Li, Y, Qian, Q, Zhou, Y, Yan, M, Sun, L, Zhang, M, Fu, Z, Wang, Y, Han, B, Pang, X, Chen, M, Li, J (2003) Brittle culm1 which encodes a cobra-like protein affects the mechanical properties of rice plants. Plant Cell 15: pp. 2020-2031 CrossRef
    46. Zhou, Y, Li, S, Qian, Q, Zeng, D, Zhang, M, Guo, L, Liu, X, Zhang, B, Deng, L, Liu, X, Luo, G, Wang, X, Li, J (2009) BC10 a DUF266-containing and Golgi-located type II membrane protein is required for cell-wall biosynthesis in rice (Oryza sativa L). Plant J 57: pp. 446-462 CrossRef
    47. Zhang, B, Zhou, Y (2011) Rice brittleness mutants: a way to open the 'black box鈥檕f monocot cell wall biosynthesis. J Integr Plant Biol 53: pp. 136-142 CrossRef
    48. Miller, JA, Cai, C, Langfelder, P, Geschwind, DH, Kurian, SM, Salomon, DR, Horvath, S (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 12: pp. 322 CrossRef
    R: A Language and Environment for Statistical Computing. version 2.13.1. R Foundation for Statistical Computing, Vienna Austria
    49. Langfelder, P, Horvath, S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: pp. 559 CrossRef
    50. Ravasz, E, Somera, AL, Mongru, DA, Oltvai, ZN, Barabasi, AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: pp. 1551-1555 CrossRef
    51. Alexa, A, Rahnenfuhrer, J, Lengauer, T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22: pp. 1600-1607 CrossRef
    52. Kanehisa, M, Goto, S, Furumichi, M, Tanabe, M, Hirakawa, M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38: pp. D355-D360 CrossRef
    53. Dong, J, Horvath, S (2007) Understanding network concepts in modules. BMC Syst Biol 1: pp. 24 CrossRef
    54. Langfelder, P, Mischel, PS, Horvath, S (2013) When is hub gene selection better than standard meta-analysis?. PLoS One 8: pp. e61505 CrossRef
    55. Peng, L, Hocart, CH, Redmond, JW, Williamson, RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211: pp. 406-414 CrossRef
    56. Xu, N, Zhang, W, Ren, S, Liu, F, Zhao, C, Liao, H, Xu, Z, Huang, J, Li, Q, Tu, Y, Yu, B, Wang, Y, Jiang, J, Qin, J, Peng, L (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 5: pp. 58 CrossRef
    57. Li, F, Ren, S, Zhang, W, Xu, Z, Xie, G, Chen, Y, Tu, Y, Li, Q, Zhou, S, Li, Y, Tu, F, Liu, L, Wang, Y, Jiang, J, Qin, J, Li, S, Li, Q, Jing, H, Zhou, F, Gutterson, N, Peng, L (2013) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 130: pp. 629-637 CrossRef
    58. Usadel, B, Obayashi, T, Mutwil, M, Giorgi, FM, Bassel, GW, Tanimoto, M, Chow, A, Steinhauser, D, Persson, S, Provart, NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32: pp. 1633-1651 CrossRef
    59. Yan, C, Yan, S, Zeng, X, Zhang, Z, Gu, M (2007) Fine mapping and isolation of bc7(t), allelic to OsCesA4. J Genet Genom 34: pp. 1019-1027 CrossRef
    60. Zhang, B, Deng, L, Qian, Q, Xiong, G, Zeng, D, Li, R, Guo, L, Li, J, Zhou, Y (2009) A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 71: pp. 509-524 CrossRef
    61. Hussey, SG, Mizrachi, E, Spokevicius, AV, Bossinger, G, Berger, DK, Myburg, AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11: pp. 173 CrossRef
    62. Zhou, J, Lee, C, Zhong, R, Ye, Z (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: pp. 248-266 CrossRef
    63. Zhong, R, Lee, C, Ye, Z (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3: pp. 1087-1103 CrossRef
    64. Hirano, K, Kondo, M, Aya, K, Miyao, A, Sato, Y, Antonio, BA, Namiki, N, Nagamura, Y, Matsuoka, M (2013) Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 54: pp. 1791-1802 CrossRef
    65. Yoshida, K, Sakamoto, S, Kawai, T, Kobayashi, Y, Sato, K, Ichinose, Y, Yaoi, K, Akiyoshi-Endo, M, Sato, H, Takamizo, T, Ohme-Takagi, M, Mitsuda, N (2013) Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci 4: pp. 383 CrossRef
    66. Lee, C, Zhong, R, Ye, Z (2012) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 53: pp. 135-143 CrossRef
    67. Brown, DM, Wightman, R, Zhang, Z, Gomez, LD, Atanassov, I, Bukowski, JP, Tryfona, T, McQueen-Mason, SJ, Dupree, P, Turner, SR (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 66: pp. 401-413 CrossRef
    68. Singh, A, Singh, U, Mittal, D, Grover, A (2010) Transcript expression and regulatory characteristics of a rice glycosyltransferase OsGT61-1 gene. Plant Sci 179: pp. 114-122 CrossRef
    69. Brown, DM, Zhang, Z, Stephens, E, Dupree, P, Turner, SR (2008) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57: pp. 732-746 CrossRef
    70. Lee, C, Teng, Q, Huang, W, Zhong, R, Ye, Z (2010) The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153: pp. 526-541 CrossRef
    71. Jones, L, Ennos, AR, Turner, SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26: pp. 205-216 CrossRef
    72. Romano, JM, Dubos, C, Prouse, MB, Wilkins, O, Hong, H, Poole, M, Kang, KY, Li, E, Douglas, CJ, Western, TL, Mansfield, SD, Campbell, MM (2012) AtMYB61 an R2R3-MYB transcription factor functions as a pleiotropic regulator via a small gene network. New Phytol 195: pp. 774-786 CrossRef
    73. Yamaguchi, M, Demura, T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27: pp. 237-242 CrossRef
    74. Yang, SD, Seo, PJ, Yoon, HK, Park, CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23: pp. 2155-2168 CrossRef
    75. Zhong, R, Lee, C, Zhou, J, McCarthy, RL, Ye, Z (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20: pp. 2763-2782 CrossRef
    76. Thimm, O, Blasing, O, Gibon, Y, Nagel, A, Meyer, S, Kruger, P, Selbig, J, Muller, LA, Rhee, SY, Stitt, M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: pp. 914-939 CrossRef
    77. Yang, C, Xu, Z, Song, J, Conner, K, Barrena, GV, Wilson, ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19: pp. 534-548 CrossRef
    78. Pimrote, K, Tian, Y, Lu, X (2012) Transcriptional regulatory network controlling secondary cell wall biosynthesis and biomass production in vascular plants. Afr J Biotechnol 11: pp. 13928-13937 CrossRef
    79. Hotelling, H (1936) Relation between two sets of variates. Biometrika 28: pp. 321-377 CrossRef
    80. Kent, WJ (2002) BLAT鈥搕he BLAST-like alignment tool. Genome Res 12: pp. 656-664 CrossRef
    The map-based sequence of the rice genome. Nature 436: pp. 793-800 CrossRef
    81. Langfelder, P, Horvath, S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1: pp. 54 CrossRef
    82. Barabasi, AL, Albert, R (1999) Emergence of scaling in random networks. Science 286: pp. 509-512 CrossRef
    83. Zhang, B, Horvath, S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: pp. 17
    84. Du, Z, Zhou, X, Ling, Y, Zhang, Z, Su, Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38: pp. W64-W70 CrossRef
    85. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES, Mesirov, JP (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: pp. 15545-15550 CrossRef
    86. Tanaka, T, Antonio, BA, Kikuchi, S, Matsumoto, T, Nagamura, Y, Numa, H, Sakai, H, Wu, J, Itoh, T, Sasaki, T (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36: pp. D1028
    87. Rivals, I, Personnaz, L, Taing, L, Potier, MC (2007) Enrichment or depletion of a GO category within a class of genes: which test?. Bioinformatics 23: pp. 401-407 CrossRef
    88. ter Braak, CJF (1990) Interpreting canonical correlation-analysis through biplots of structure correlations and weights. Psychometrika 55: pp. 519-531 CrossRef
    89. Gonz谩lez, I, L锚 Cao, KA, Davis, MD, D茅jean, S (2013) Insightful graphical outputs to explore relationships between two 'omics鈥?data sets. BioData Mining 5: pp. 19 CrossRef
    90. L锚 Cao, KA, Gonz谩lez, I, D茅jean, S (2009) integrOmics: an R package to unravel relationships between two omics data sets. Bioinformatics 25: pp. 2855-2856 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and maintenance. However, functional association for the majority of these gene products remains obscure. One useful approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale measurements may improve the biological inferences. Results In this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries. First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively. Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to play a regulatory role in the production of G-rich lignification. Conclusions Here, we integrated transcriptomic associations and cell wall metabolism and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical co-expression approach to allow deeper insight into cell wall biology in rice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700