MicroRNA target prediction based on second-order Hidden Markov Model
详细信息    查看全文
  • 作者:Song Gao (1)
    Liangsheng Zhang (1) (2)
    Diangang Qin (1)
    Tienan Feng (1)
    Yifei Wang (1)
  • 关键词:microRNA ; target gene ; experimentally supported targets ; second ; order Hidden Markov Model ; forward algorithm
  • 刊名:Frontiers in Biology
  • 出版年:2010
  • 出版时间:April 2010
  • 年:2010
  • 卷:5
  • 期:2
  • 页码:171-179
  • 全文大小:233KB
  • 参考文献:1. Barciszewski J, Erdmann V A (2008). Noncoding RNAs: Molecular Biology and Molecular Medicine (in Chinese, Trans. Zheng X F). Beijing: Chemical Industry Press, 104-19
    2. Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986a). Statistical patterns in primary structures of functional regions in the / E. coli genome. I. Oligonucleotide frequencies analysis. Mol Biol, 20: 826-33
    3. Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986b). Statistical patterns in primary structures of functional regions in the / E. coli genome. II. Non-homogeneous Markov models. Mol Biol, 20: 833-40
    4. Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986c). Statistical patterns in primary structures of functional regions in the / E. coli genome. III. Computer recognition of coding regions. Mol Biol, 20: 1145-150
    5. Churchill G A (1989). Stochastic models for heterogeneous DNA sequences. Bull Mathem Biol, 51: 79-4
    6. Du S P (2007). The Baum-Welch Algorithm of HMM2 with Multiple Observations. J Biomathem, 22(4): 685-90 (in Chinese)
    7. Du S P, Li H (2004). Second-order Hidden Markov Models and Its Application to Computational Linguistics. J Sichuan Uni (Nat Sci Edi), 41(2): 284-89 (in Chinese)
    8. Duursma A M, Martijn K, Mariette S, Carlos L S, Reuven A (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5): 872-77 CrossRef
    9. Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S (2003). MicroRNA targets in Drosophila. Genome Biol, 5(1): Article Rl
    10. Gough J, Chothia C (2002). SUPERFAMILY: HMMs representing all proteins of known structure, SCOP sequence searches, alignments, and genome assignments. Nucl Acids Res, 30(1): 268-72 CrossRef
    11. Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res, 34: D140–D144 CrossRef
    12. Hébert S S, Horré K, Nicola? L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA, 105(17): 6415-420 CrossRef
    13. Huynh T, Miranda K, Tay Y, Ang Y S, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006). A pattern-based method for the identification of microRNA-target sites and their corresponding RNA/RNA complexes. Cell, 126: 1203-217 CrossRef
    14. John B, Enright A J, Aravin A, Uschl T, Sander C, Marks D S (2004). Human MicroRNA Targets. PLoS Biology, 2(11): 1862-879 CrossRef
    15. Kim S K, Nam J W, Rhee J K, Lee W J, Zhang B T (2006). MiTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics, 7: 411 CrossRef
    16. Kiriakidou M, Nelson P T, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev, 18: 1165-178 CrossRef
    17. Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet, 37: 495-00 CrossRef
    18. Landais S, Landry S, Legault P, Rassart E (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res, 67(12): 5699-707 CrossRef
    19. Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120: 15-0 CrossRef
    20. Lewis B P, Shih I H, Jones-Rhoades MW, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115: 787-98 CrossRef
    21. Luo X B, Lin H X, Pan Z W, Xiao J N, Zhang Y, Lu Y J, Yang B F, Wang Z G (2008). Down-regulation of miR-1/miR-133 Contributes to Re-expression of Pacemaker Channel Genes HCN2 and HCN4 in Hypertrophic Heart. J Biol Chem, 283(29): 20045-0052 CrossRef
    22. Nam J W, Shin K R, Han J, Lee Y, Kim V N, Zhang B T (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucl Acids Res, 33(11): 3570-581 CrossRef
    23. Rabiner L R, Juang B H (1986). An introduction to hidden Markov models. In: IEEE Acoustics, Speech & Signal Processing Magazine, 3: 4-6
    24. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004). Fast and effective prediction of microRNA/target duplexes. RNA, 10: 1507-517 CrossRef
    25. Rossi J J, Hannon G J (2008). MicroRNA Methods. Beijing: Science Press, 1-3
    26. Rusinov V, Baev V, Minkov I N, Tabler M (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucl Acids Res, 33: W696–W700 CrossRef
    27. Saetrom O, Ola S J, Saetrom P (2005). Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA, 11: 995-003 CrossRef
    28. Sengupta S, den Boon J A, Chen I H, Newton M A, Stanhope S A, Cheng Y J, Chen C J, Hildesheim A, Sugden B, Ahlquist P (2008). MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA, 5(15): 5874-878 CrossRef
    29. Sethupathy P, Corda B, Hatzigeorgiou A G (2006). TarBase: A comprehensive database of experimentally supported animal micro- RNA targets. RNA, 12(2): 192-97 CrossRef
    30. Shi X X, Wang T J, He Z Y (2001). The Learning Algorithm of the Second Order HMM and Its Relationship with the First Order HMM. J Appl Sci, 19(1): 29-2 (in Chinese)
    31. Skalsky R L, Samols M A, Plaisance K B, Boss I W, Riva A, Lopez M C, Baker H V, Renne R (2007). Kaposi’s sarcoma-associated herpes-virus encodes an ortholog of miR-155. J Virol, 81(23): 12836-2845 CrossRef
    32. Thadanil R, Tammi M T (2006). MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics, 7(Suppl 5): S20 CrossRef
    33. Wang Y, Lee A T, Ma J Z, Wang J, Ren J, Yang Y, Tantoso E, Li K B, Tan P, Lee C G L (2008). Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem, 283(19): 13205-3215 CrossRef
    34. Xia W, Cao G J, Shao N S (2009). Research approach of microRNA target gene in search and indentification. Sci China, C: Life Sci, 39(1): 121-28 (in Chinese)
    35. Xu D, Liu H J, Wang Y F (2005). BSS-HMM3s: An improved HMM method for identifying transcription factor binding sites. DNA Sequence, 16(6): 403-11
    36. Yang Y C, Wang Y P, Li K B (2008). MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics, 9(Suppl 12): S4 CrossRef
    37. Yousef M, Jung S, Kossenkov A V, Showe L C, Owe M K Sh (2007). Na?ve Bayes for MicroRNA Target Predictions Machine Learning for MicroRNA Targets. Bioinformatics, 23(22): 2987-992 CrossRef
    38. Zhang B H, Pan X P, Wang Q L, Cobb G P, Anderson T A (2006). Computational identification of microRNAs and their targets. Comput Biol Chem, 30: 395-07 CrossRef
  • 作者单位:Song Gao (1)
    Liangsheng Zhang (1) (2)
    Diangang Qin (1)
    Tienan Feng (1)
    Yifei Wang (1)

    1. Department of Mathematics, School of Sciences, Shanghai University, Shanghai, 200444, China
    2. School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 200433, China
  • ISSN:1674-7992
文摘
MicroRNAs are one class of small single-stranded RNA of about 22 nt serving as important negative gene regulators. In animals, miRNAs mainly repress protein translation by binding itself to the 3-UTR regions of mRNAs with imperfect complementary pairing. Although bioinformatics investigations have resulted in a number of target prediction tools, all of these have a common shortcoming—a high false positive rate. Therefore, it is important to further filter the predicted targets. In this paper, based on miRNA:target duplex, we construct a second-order Hidden Markov Model, implement Baum-Welch training algorithm and apply this model to further process predicted targets. The model trains the classifier by 244 positive and 49 negative miRNA:target interaction pairs and achieves a sensitivity of 72.54%, specificity of 55.10% and accuracy of 69.62% by 10-fold cross-validation experiments. In order to further verify the applicability of the algorithm, previously collected datasets, including 195 positive and 38 negative, are chosen to test it, with consistent results. We believe that our method will provide some guidance for experimental biologists, especially in choosing miRNA targets for validation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700