Active precision design for complex machine tools: methodology and case study
详细信息    查看全文
  • 作者:Yanwei Xu ; Lianhong Zhang ; Shuxin Wang
  • 关键词:Machine tool ; Positioning repeatability ; Error analysis ; Precision design ; Spiral bevel gear ; Gear milling machine
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:80
  • 期:1-4
  • 页码:581-590
  • 全文大小:1,897 KB
  • 参考文献:1.Rao SB (1997) Metal cutting machine tool design鈥攁 review. J Manuf Sci Eng 119:713鈥?16View Article
    2.Hale LC (1999) Principles and techniques for designing precision machines. PhD thesis. Massachusetts Institute of Technology
    3.Schellekens P, Rosielle N, Vermeulen H, Vermeulen M, Wetzels S, Pril W (1998) Design for precision: current status and trends. CIRP Ann Manuf Technol 47(2):557鈥?86View Article
    4.Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools鈥攁 review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235鈥?256View Article
    5.Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools鈥攁 review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257鈥?284View Article
    6.Ni J (1997) A perspective review of CNC machine accuracy enhancement through real-time error compensation. Chin Mechanic Eng 8(1):29鈥?3
    7.Chen JS (1995) Computer-aided accuracy enhancement for multi-axis CNC machine tool. Int J Mach Tools Manuf 35(4):593鈥?05View Article
    8.Wang SM, Liu YL, Kang Y (2002) An efficient error compensation system for CNC multi-axis machines. Int J Mach Tools Manuf 42(11):1235鈥?245View Article
    9.Tsutsumi M, Saito A (2003) Identification and compensation of systematic deviations particular to 5-axis machining centers. Int J Mach Tools Manuf 43(8):771鈥?80View Article
    10.Tsutsumi M, Saito A (2004) Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements. Int J Mach Tools Manuf 44(12鈥?3):1333鈥?342View Article
    11.Raksiri C, Parnichkun M (2004) Geometric and force errors compensation in a 3-axis CNC milling machine. Int J Mach Tools Manuf 44(12鈥?3):1283鈥?291View Article
    12.Zhu WD, Wang ZG, Yamazaki K (2010) Machine tool component error extraction and error compensation by incorporating statistical analysis. Int J Mach Tools Manuf 50(9):798鈥?06View Article
    13.Jung JH, Choi JP, Lee SJ (2006) Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. J Mater Process Technol 174(1鈥?):56鈥?6View Article
    14.Zhang Q, Zhao HL, Tang H, Sheng BH (1999) Application of error compensation technique for NC machine tools: thermal error compensation. Manufact Technol Mach Tool 3:26鈥?8
    15.Liang RJ, Ye WH, Zhang HY, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9鈥?2):1167鈥?176MATH
    16.Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5鈥?):681鈥?89View Article
    17.Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5鈥?):667鈥?75View Article
    18.Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1鈥?):205鈥?12View Article
    19.Tan B, Mao XY, Liu HQ, Li B, He SP, Peng FY, Yin L (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82鈥?3:11鈥?0View Article
    20.Li Y, Zhao WH, Wu WW, Lu BH, Chen YB (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9鈥?2):1415鈥?427View Article
    21.Huang YQ, Zhang J, Li X, Tian LJ (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(9鈥?2):1669鈥?675View Article
    22.Zhang Q, Wang GF, Liu YW, Zhao HL, Sheng BH (1999) Application of error compensation technique for NC machine tools: geometric error compensation. Manufact Technol Mach Tool 1:30鈥?4
    23.Zhang Q, Zhang HG, Liu YW, Zhao HL, Sheng BH, Zhang TC (1999) Application of error compensation technique for NC machine tools: load error compensation. Manufact Technol Mach Tool 2:8鈥?
    24.Liu YW, Zhang Q, Zhao XS, Zhang ZF, Zhang YD (2002) Multi-body system based technique for compensating thermal errors in machining centers. Chin J Mech Eng 38(1):127鈥?30View Article
    25.Fan JW, Guan JL, Wang WC, Luo Q, Zhang XL, Wang LY (2002) A universal modeling method for enhancement the volumetric accuracy of CNC machine tools. J Mater Process Technol 129(1鈥?):624鈥?28View Article
    26.Smith S, Woody BA, Miller JA (2005) Improving the accuracy of large scale monolithic parts using fiducials. CIRP Ann Manuf Technol 54(1):483鈥?86View Article
    27.Alberto CR, Leopoldo RH, Tatiana B, Ernst K (2007) Geometrical error analysis of a CNC micro-machine tool. Mechatronics 17(4鈥?):231鈥?43
    28.Woody BA, Smith KS, Hocken RJ, Miller JA (2007) A technique for enhancing machine tool accuracy by transferring the metrology reference from the machine tool to the workpiece. J Manuf Sci Eng 129(3):636鈥?43View Article
    29.Brecher C, Utsch P, Wenzel C (2009) Five-axes accuracy enhancement by compact and integral design. CIRP Ann Manuf Technol 58(1):355鈥?58View Article
    30.Wang ZG, Cheng X, Nakamoto K, Kobayashi S, Yamazaki K (2010) Design and development of a precision machine tool using counter motion mechanisms. Int J Machine Tools Manufac 50(4):357鈥?65View Article
    31.Brecher C, Utsch P, Klar R, Wenzel C (2010) Compact design for high precision machine tools. Int J Mach Tools Manuf 50(4):328鈥?34View Article
    32.Chase KW, Greenwood WH, Loosli BG, Hauglund LF (1990) Least cost tolerance allocation for mechanical assemblies with automated process selection. Manufac Rev 3(1):49鈥?9
    33.Chase KW (1999) Tolerance allocation methods for designers. ADCATS Rep 99(6):1鈥?8
    34.Sivakumar K, Balamurugan C, Ramabalan S (2011) Concurrent multi-objective tolerance allocation of mechanical assemblies considering alternative manufacturing process selection. Int J Adv Manuf Technol 53(5鈥?):711鈥?32View Article
    35.Andolfatto L, Thi茅baut F, Lartigue C, Douilly M (2014) Quality-and cost-driven assembly technique selection and geometrical tolerance allocation for mechanical structure assembly. J Manuf Syst 33(1):103鈥?15View Article
    36.Khodaygan S, Movahhedy MR (2014) Robust tolerance design of mechanical assemblies using a multi-objective optimization formulation. SAE Technical Paper No.2014-01-0378
    37.Montgomery DC (2009) Introduction to statistical quality control, 6th edn. Wiley, New York, pp 351鈥?64
    38.International Standard ISO 230-2: 2006(E), Test code for machine tools鈥攑art 2: determination of accuracy and repeatability of positioning numerically controlled axes
    39.Ma H, Wang J (2009) Precision theory of instrument. Press of Beijing University of Aeronautics and Astronautics, Beijing, pp 376鈥?79
    40.Jin T (2005) Precision theory and application. Press of University of Science and Technology of China, Hefei, pp 212鈥?14
    41.Litivin FL, Fuentes A (2004) Gears geometry and applied theory, 2nd edn. Cambridge University Press, Cambridge, pp 633鈥?44View Article
    42.Gonzalez-Perez I, Fuentes A, Hayasaka K (2006) Analytical determination of basic machine-tool settings for generation of spiral bevel gears from blank data. J Mech Des 132(10):101002-1鈥?1
    43.Zeng T (1989) Design and machining of spiral bevel gear. Harbin Institute of Technology Press, Harbin, pp 90鈥?1
    44.Fan Q (2006) Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by gleason face hobbing process. J Mech Des 128(6):1315鈥?327View Article
    45.Fan Q (2007) Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes. J Mech Des 129(1):31鈥?7View Article
    46.China National Standard GB 11365-89, Accuracy of bevel and hypoid gears
  • 作者单位:Yanwei Xu (1) (4)
    Lianhong Zhang (1)
    Shuxin Wang (1)
    Hongqi Du (2)
    Baolian Chai (2)
    S. Jack Hu (3)

    1. Key Laboratory of Mechanism Theory and Equipment Design (Tianjin University), Ministry of Education, Tianjin, 300072, People鈥檚 Republic of China
    4. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, 471023, People鈥檚 Republic of China
    2. Tianjin No. 1 Machine Tool Works, Tianjin, 300180, People鈥檚 Republic of China
    3. Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI, 48109-2125, USA
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
Machine tool design starts with the determination of performance specifications. Precision of the NC axes is an important aspect of machine tool design. Conventionally, the precision specification of machine tools is empirically determined, resulting in poor designs with insufficient or excessive precision. To provide a cost-effective precision specification for complex machine tools, such as gear cutting machines, an active precision design approach is proposed to generate the specification of the positioning repeatability of NC axes to meet the designated working precision requirements of the machine tools. The methodology consists of error analysis and precision design in four steps: (1) workpiece surface formation modeling in terms of the motion axes and layout of the machine tool, and the generating principle of workpiece features; (2) workpiece machining error modeling based on the workpiece surface formation model by considering kinematic errors of the NC axes of the machine tool; (3) workpiece machining precision modeling via the machining error model; and (4) precision allocation according to the required workpiece precision and the machining error model. The methodology is demonstrated and validated through a case study of precision design for a six-axis CNC spiral bevel gear milling machine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700