Doping-free carbon nanotube optoelectronic devices
详细信息    查看全文
  • 作者:Sheng Wang (1)
    ZhiYong Zhang (1)
    LianMao Peng (1)
  • 关键词:carbon nanotube ; diode ; photodetector ; LED ; solar cell ; doping ; free
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:January 2012
  • 年:2012
  • 卷:57
  • 期:2-3
  • 页码:149-156
  • 全文大小:860KB
  • 参考文献:1. Avouris P, Freitag M, Perebeinos V. Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2008, 2: 341鈥?50 CrossRef
    2. Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35鈥?9 CrossRef
    3. Prechtel L, Song L, Manus S, et al. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett, 2011, 11: 269鈥?72 CrossRef
    4. Kamat P V. Harvesting photons with carbon nanotubes. Nano Today, 2006, 1: 20鈥?7 CrossRef
    5. Zhu H W, Wei J Q, Wang K L, et al. Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells, 2009, 93: 1461鈥?470 CrossRef
    6. Dukovic G, Wang F, Song D, et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett, 2005, 5: 2314鈥?318 CrossRef
    7. Wang F, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons. Science, 2005, 308: 838鈥?41 CrossRef
    8. Perebeinos V, Tersoff J, Avouris P. Scaling of excitons in carbon nanotubes. Phys Rev Lett, 2004, 92: 257402 CrossRef
    9. Freitag M, Martin Y, Misewich J A, et al. Photoconductivity of single carbon nanotubes. Nano Lett, 2003, 3: 1067 CrossRef
    10. Balasubramanian K, Fan Y, Burghard M, et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl Phys Lett, 2005, 87: 073101 CrossRef
    11. Shim M, Siddons G P. Photoinduced conductivity changes in carbon nanotube transistors. Appl Phys Lett, 2003, 83: 3564 CrossRef
    12. Avouris P, Afzali A, Appenzeller J, et al. Carbon nanotube electronics and optoelectronics. IEDM Tech Digest, 2004, 525
    13. Lee J U. Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett, 2005, 87: 073101 CrossRef
    14. Gabor N M, Zhong Z H, Bosnick K, et al. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 2010, 325: 1367鈥?371 CrossRef
    15. Zhou C W, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotube. Science, 2000, 290: 1552鈥?555 CrossRef
    16. Abdula D, Shim M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. ACS Nano, 2008, 2: 2154 CrossRef
    17. Lee J U, Gipp P P, Heller C M. Carbon nanotube p-n junction diodes. Appl Phys Lett, 2004, 85: 145鈥?47 CrossRef
    18. Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510鈥?19 CrossRef
    19. Wang S, Zhang Z Y, Ding L, et al. A doping-free carbon nanotube CMOS inverter-based bipolar diode and ambipolar transistor. Adv Mater, 2008, 20: 3258鈥?262 CrossRef
    20. Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654鈥?57 CrossRef
    21. Zhang Z Y, Liang X L, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett, 2007, 7: 3603鈥?607 CrossRef
    22. Zhang Z Y, Wang S, Ding L, et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett, 2008, 8: 3696鈥?701 CrossRef
    23. Ding L, Wang S, Zhang Z Y, et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett, 2009, 9: 4209鈥?214 CrossRef
    24. Sze S M. Physics of Semiconductor Devices. New York: Wiley, 1981
    25. Wang S, Zhang L H, Zhang Z Y, et al. Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode. J Phys Chem C, 2009, 113: 6891鈥?893 CrossRef
    26. Chen C, Lu Y, Kong E S, et al. Nanowelded carbon-nanotube based solar microcells. Small, 2008, 4: 1313鈥?318 CrossRef
    27. Wei J, Jia Y, Shu Q, et al. Double-walled carbon nanotube solar cells. Nano Lett, 2007, 7: 2317鈥?321 CrossRef
    28. Jia Y, Wei J, Wang K, et al. Nanotube-silicon heterojunction solar cells. Adv Mater, 2008, 20: 4594鈥?598 CrossRef
    29. Li Z, Kunets V, Saini V, et al. Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano, 2009, 3: 1407鈥?414 CrossRef
    30. Zhang L, Jia Y, Wang S, et al. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett, 2010, 10: 3583鈥?589 CrossRef
    31. Liang C, Roth S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett, 2008, 8: 1809鈥?812 CrossRef
    32. Brown P, Takechi K, Kamat P. Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J Phys Chem C, 2008, 112: 4776鈥?782 CrossRef
    33. Robel I, Bunker B, Kamat P. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv Mater, 2005, 17: 2458鈥?463 CrossRef
    34. Misewich J A, Martel R, Avouris P, et al. Electrically induced optical emission from a carbon nanotube FET. Science, 2003, 300: 783鈥?86 CrossRef
    35. Chen J, Perebeinos V, Freitag M, et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science, 2005, 310: 1171鈥?174 CrossRef
    36. Marty L, Adam E, Albert L, et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys Rev Lett, 2006, 96: 36803 CrossRef
    37. Xia F, Steiner M, Lin Y M, et al. A microcavity-contralled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nat Nanotechnol, 2008, 3: 609鈥?13 CrossRef
    38. Mueller T, Kinoshita M, Steiner M, et al. Efficient narrow-band light emission from a single carbon p-n diode. Nat Nanotechnol, 2010, 5: 27鈥?1 CrossRef
    39. Wang S, Zeng Q S, Yang L J, et al. High-performance carbon nanotube light-emitting diodes with asymmetric contacts. Nano Lett, 2011, 11: 23鈥?9 CrossRef
    40. Adam E, Aguirre C M, Marty L, et al. Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett, 2008, 8: 2351鈥?355 CrossRef
    41. Lefebvre J, Austing D G, Finnie P. Two modes of electroluminescence from single-walled carbon nanotubes. Phys Status Solidi RRL, 2009, 3: 199鈥?01 CrossRef
    42. Engel M, Small J P, Steiner M, et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano, 2008, 2: 2445鈥?452 CrossRef
    43. Zaumseil J, Ho X, Guest J R, et al. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors. ACS Nano, 2009, 3: 2225鈥?234 CrossRef
    44. Piper W W, Williams F E. Theory of electroluminescence. Phys Rev, 1958, 98: 1809鈥?813 CrossRef
    45. Weisman R B, Bachilo S M. Dependence of optical energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett, 2003, 3: 1235鈥?238 CrossRef
    46. Bachilo S M, Strano M S, Kittrell C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298: 2361鈥?366 CrossRef
    47. O鈥機onnell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593鈥?96 CrossRef
    48. Wang F, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons. Science, 2005, 308: 838鈥?41 CrossRef
    49. Dukovic G, Wang F, Song D, et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett, 2005, 5: 2314鈥?318 CrossRef
  • 作者单位:Sheng Wang (1)
    ZhiYong Zhang (1)
    LianMao Peng (1)

    1. Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
  • ISSN:1861-9541
文摘
Semiconducting carbon nanotubes (CNTs) possess outstanding electrical and optical properties because of their special one-dimensional (1D) structure. CNTs are direct bandgap materials, which makes them ideal for use in optoelectronic devices, e.g. light emitters and light detectors. Excitons determine their light absorption and light emission processes due to the strong Coulomb interactions between electrons and holes in CNTs. In this paper, we review recent progress in CNT photodetectors, photovoltaic devices and light emitters. In particular, we focus on the doping-free CNT optoelectronic devices developed by our group in recent years.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700