The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction
详细信息    查看全文
  • 作者:Shengnan Lu ; Qingliang Liao ; Junjie Qi ; Shuo Liu ; Yichong Liu ; Qijie Liang…
  • 关键词:screening effect ; piezopotential ; Schottky junction ; Au@ZnO nanoarrays ; piezoelectric nanogenerator
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:372-379
  • 全文大小:1,880 KB
  • 参考文献:[1]Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H.-J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917–928.CrossRef
    [2]Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y. S.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086–3090.CrossRef
    [3]Stassi, S.; Cauda, V.; Ottone, C.; Chiodoni, A.; Pirri, C. F.; Canavese, G. Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy 2015, 13, 474–481.CrossRef
    [4]Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRef
    [5]Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.CrossRef
    [6]Zhang, Z.; Liao, Q. L.; Zhang, X. H.; Zhang, G. J.; Li, P. F.; Lu, S. N.; Liu, S.; Zhang, Y. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale 2015, 7, 1796–1801.CrossRef
    [7]Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mater. Interfaces 2014, 6, 14116–14122.CrossRef
    [8]Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. Highresolution dynamic pressure sensor array based on piezophototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.CrossRef
    [9]Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.CrossRef
    [10]Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.CrossRef
    [11]Lu, S. N.; Qi, J. J.; Gu, Y. S.; Liu, S.; Xu, Q. K.; Wang, Z. Z.; Liang, Q. J.; Zhang, Y. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 2015, 7, 4461–4467.CrossRef
    [12]Gao, Y. F.; Wang, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009, 9, 1103–1110.CrossRef
    [13]Liu, J.; Fei, P.; Song, J. H.; Wang, X. D.; Lao, C. S.; Tummala, R.; Wang, Z. L. Carrier density and Schottky barrier on the performance of DCnanogenerator. Nano Lett. 2008, 8, 328–332.CrossRef
    [14]Hu, Y. F.; Lin, L.; Zhang, Y.; Wang, Z. L. Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 2012, 24, 110–114.CrossRef
    [15]Pham, T. T.; Lee, K. Y.; Lee, J.-H.; Kim, K.-H.; Shin, K.-S.; Gupta, M. K.; Kumar, B.; Kim, S.-W. Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential. Energy Environ. Sci. 2013, 6, 841–846.CrossRef
    [16]Sohn, J. I.; Cha, S. N.; Song, B. G.; Lee, S.; Kim, S. M.; Ku, J.; Kim, H. J.; Park, Y. J.; Choi, B. L.; Wang, Z. L. et al. Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 2013, 6, 97–104.CrossRef
    [17]Lee, S.; Lee, J.; Ko, W.; Cha, S.; Sohn, J.; Kim, J.; Park, J.; Park, Y.; Hong, J. Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications. Nanoscale 2013, 5, 9609–9614.CrossRef
    [18]Shin, S. H.; Kim, Y. H.; Lee, M. H.; Jung, J. Y.; Seol, J. H.; Nah, J. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. ACS Nano 2014, 8, 10844–10850.CrossRef
    [19]Hu, Y. F.; Liu, Y.; Li, W. L.; Gao, M.; Liang, X. L.; Li, Q.; Peng, L.-M. Observation of a 2D electron gas and the tuning of the electrical conductance of ZnO nanowires by controllable surface band-bending. Adv. Funct. Mater. 2009, 19, 2380–2387.CrossRef
    [20]Lee, K. Y.; Kumar, B.; Seo, J. S.; Kim, K. H.; Sohn, J. I.; Cha, S. N.; Choi, D.; Wang, Z. L.; Kim, S. W. p-Type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett. 2012, 12, 1959–1964.CrossRef
    [21]Lee, K. Y.; Bae, J.; Kim, S.; Lee, J.-H.; Yoon, G. C.; Gupta, M. K.; Kim, S.; Kim, H.; Park, J.; Kim, S.-W. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy 2014, 8, 165–173.CrossRef
    [22]Briscoe, J.; Stewart, M.; Vopson, M.; Cain, M.; Weaver, P. M.; Dunn, S. Nanostructured p–n junctions for kinetic-toelectrical energy conversion. Adv. Energy Mater. 2012, 2, 1261–1268.CrossRef
    [23]Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P. M.; Cain, M. G.; Dunn, S.; Briscoe, J. Improved performance of p–n junction-based ZnO nanogenerators through CuSCNpassivation of ZnO nanorods. J. Mater. Chem. A 2014, 2, 10945–10951.CrossRef
    [24]Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens. Bioelectron. 2015, 64, 499–504.CrossRef
    [25]Zhao, Y. G.; Fang, X. F.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Zheng, X.; Lin, P.; Zhao, L. C.; Zhang, Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced L-lactate sensing. Colloid Surf. B-Biointerfaces 2015, 126, 476–480.CrossRef
    [26]Zhang, Z.; Liao, Q. L.; Yan, X. Q.; Wang, Z. L.; Wang, W. D.; Sun, X.; Lin, P.; Huang, Y. H.; Zhang, Y. Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 2014, 7, 190–198.CrossRef
    [27]Palermo, V.; Palma, M.; Samorì, P. Electronic characterization of organic thin films by kelvin probe force microscopy. Adv. Mater. 2006, 18, 145–164.CrossRef
    [28]Jeong, C. K.; Kim, I.; Park, K. I.; Oh, M. H.; Paik, H.; Hwang, G. T.; No, K.; Nam, Y. S.; Lee, K. J. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.CrossRef
    [29]Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRef
    [30]Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.CrossRef
    [31]Yang, Y.; Guo, W.; Qi, J. J.; Zhao, J.; Zhang, Y. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett. 2010, 97, 223113.CrossRef
    [32]Briscoe, J.; Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P. M.; Cain, M.; Dunn, S. Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 2013, 6, 3035–3045.CrossRef
    [33]Lvovich, V. F. Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2012.CrossRef
  • 作者单位:Shengnan Lu (1)
    Qingliang Liao (1)
    Junjie Qi (1)
    Shuo Liu (1)
    Yichong Liu (1)
    Qijie Liang (1)
    Guangjie Zhang (1)
    Yue Zhang (1) (2)

    1. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
    2. Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
This paper describes a novel strategy to weaken the piezopotential screening effect by forming Schottky junctions on the ZnO surface through the introduction of Au particles onto the surface. With this approach, the piezoelectric-energyconversion performance was greatly enhanced. The output voltage and current density of the Au@ZnO nanoarray-based piezoelectric nanogenerator reached 2 V and 1 μA/cm2, respectively, 10 times higher than the output of pristine ZnO nanoarray-based piezoelectric nanogenerators. We attribute this enhancement to dramatic suppression of the screening effect due to the decreased carrier concentration, as determined by scanning Kelvin probe microscope measurements and impedance analysis. The lowered capacitance of the Au@ZnO nanoarraybased piezoelectric nanogenerator also contributes to the improved output. This work provides a novel method to enhance the performance of piezoelectric nanogenerators and possibly extends to piezotronics and piezophototronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700