Tumor-Suppressing Effects of miR-429 on Human Osteosarcoma
详细信息    查看全文
  • 作者:Xiaozhou Liu (1)
    Yunlai Liu (2)
    Sujia Wu (3)
    Xin Shi (3)
    Lihong Li (2)
    Jianning Zhao (1)
    Haidong Xu (3)
  • 关键词:Human osteosarcoma ; miR ; 429 ; Tumor ; suppressor ; ZEB1 ; Osteosarcoma therapy
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:70
  • 期:1
  • 页码:215-224
  • 全文大小:1,679 KB
  • 参考文献:1. Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. / Cancer, / 115, 1531-543. CrossRef
    2. Ottaviani, G., & Jaffe, N. (2009). The epidemiology of osteosarcoma. / Cancer Treatment and Research, / 152, 3-3. CrossRef
    3. Lewis, V. O. (2009). What’s new in musculoskeletal oncology. / Journal of Bone and Joint Surgery. American Volume, / 91, 1546-556. CrossRef
    4. Meyers, P. A., Schwartz, C. L., Krailo, M., Kleinerman, E. S., Betcher, D., Bernstein, M. L., et al. (2005). Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. / Journal of Clinical Oncology, / 23, 2004-011. CrossRef
    5. Cho, Y., Jung, G. H., Chung, S. H., Kim, J. Y., Choi, Y., & Kim, J. D. (2011). Long-term survivals of stage IIb osteosarcoma: a 20-year experience in a single institution. / Clinics in Orthopedic Surgery, / 3, 48-4. CrossRef
    6. Tsuchiya, H., Tomita, K., Mori, Y., Asada, N., Morinaga, T., Kitano, S., et al. (1998). Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. / Anticancer Research, / 18, 657-66.
    7. Bolling, T., Schuller, P., Distelmaier, B., Schuck, A., Ernst, I., Gosheger, G., et al. (2008). Perioperative high-dose rate brachytherapy using a bendy applicator (flab): treatment results of 74 patients. / Anticancer Research, / 28, 3885-890.
    8. Thomas, D., & Kansara, M. (2006). Epigenetic modifications in osteogenic differentiation and transformation. / Journal of Cellular Biochemistry, / 98, 757-69. CrossRef
    9. Ambros, V. (2001). microRNAs: Tiny regulators with great potential. / Cell, / 107, 823-26. CrossRef
    10. Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. / Nature Reviews Molecular Cell Biology, / 10, 126-39. CrossRef
    11. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. / Cell, / 136, 215-33. CrossRef
    12. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. / Genes & Development, / 20, 515-24. CrossRef
    13. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. / Proceedings of the National Academy of Sciences USA, / 101, 2999-004. CrossRef
    14. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. / Nature Reviews Cancer, / 6, 259-69. CrossRef
    15. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. / Nature Reviews Cancer, / 6, 857-66. CrossRef
    16. Lulla, R. R., Costa, F. F., Bischof, J. M., Chou, P. M., De F Bonaldo, M., Vanin, E. F., et al. (2011). Identification of differentially expressed microRNAs in osteosarcoma. / Sarcoma, / 2011, 732690. CrossRef
    17. Maire, G., Martin, J. W., Yoshimoto, M., Chilton-MacNeill, S., Zielenska, M., & Squire, J. A. (2011). Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. / Cancer Genetics, / 204, 138-46. CrossRef
    18. Sun, T., Wang, C., Xing, J., & Wu, D. (2011). miR-429 modulates the expression of c-myc in human gastric carcinoma cells. / European Journal of Cancer, / 47, 2552-559. CrossRef
    19. Uhlmann, S., Zhang, J. D., Schwager, A., Mannsperger, H., Riazalhosseini, Y., Burmester, S., et al. (2010). miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. / Oncogene, / 29, 4297-306. CrossRef
    20. Snowdon, J., Zhang, X., Childs, T., Tron, V. A., & Feilotter, H. (2011). The microRNA-200 family is upregulated in endometrial carcinoma. / PLoS One, / 6, e22828. CrossRef
    21. Han, Y., Chen, J., Zhao, X., Liang, C., Wang, Y., Sun, L., et al. (2011). MicroRNA expression signatures of bladder cancer revealed by deep sequencing. / PLoS One, / 6, e18286. CrossRef
    22. Nam, E. J., Yoon, H., Kim, S. W., Kim, H., Kim, Y. T., Kim, J. H., et al. (2008). MicroRNA expression profiles in serous ovarian carcinoma. / Clinical Cancer Research, / 14, 2690-695. CrossRef
    23. Li, D., Liu, X., Lin, L., Hou, J., Li, N., Wang, C., et al. (2011). MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. / Journal of Biological Chemistry, / 286, 36677-6685. CrossRef
    24. Hou, J., Lin, L., Zhou, W., Wang, Z., Ding, G., Dong, Q., et al. (2011). Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. / Cancer Cell, / 19, 232-43. CrossRef
    25. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. / Nature Cell Biology, / 10, 593-01. CrossRef
    26. Ellis, A. L., Wang, Z., Yu, X., & Mertz, J. E. (2010). Either ZEB1 or ZEB2/SIP1 can play a central role in regulating the Epstein-Barr virus latent-lytic switch in a cell-type-specific manner. / Journal of Virology, / 84, 6139-152. CrossRef
    27. Sullivan, N. J., Sasser, A. K., Axel, A. E., Vesuna, F., Raman, V., Ramirez, N., et al. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. / Oncogene, / 28, 2940-947. CrossRef
    28. Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. / Cancer Research, / 66, 3365-369. doi:10.1158/0008-5472.CAN-05-3401 . CrossRef
    29. Bacher, U., Kern, W., Haferlach, C., Alpermann, T., Haferlach, T., & Schnittger, S. (2013). Cyclin D1 (CCND1) mRNA expression as assessed by real-time PCR contributes to diagnosis and follow-up control in patients with mantle cell lymphoma. / Experimental Hematology., / 41(12), 1028-037. CrossRef
    30. Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. / Biochemical and Biophysical Research Communications, / 406, 552-57. CrossRef
    31. Lu, J., Wen, M., Huang, Y., He, X., Wang, Y., Wu, Q., et al. (2013). C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes. / Epigenetics., / 8, 571-83. CrossRef
    32. Bendoraite, A., Knouf, E. C., Garg, K. S., Parkin, R. K., Kroh, E. M., O’Briant, K. C., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. / Gynecologic Oncology, / 116, 117-25. CrossRef
    33. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA targets. / PLoS Biology, / 2, e363. CrossRef
    34. Coronnello, C., & Benos, P. V. (2013). ComiR: Combinatorial microRNA target prediction tool. / Nucleic Acids Research, / 41, W159–W164. CrossRef
    35. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. / Cell, / 115, 787-98. CrossRef
    36. Megraw, M., Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2007). miRGen: a database for the study of animal microRNA genomic organization and function. / Nucleic Acids Research, / 35, D149–D155. CrossRef
    37. Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. / Nucleic Acids Research, / 38, D137–D141. CrossRef
    38. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: tools for microRNA genomics. / Nucleic Acids Research, / 36, D154–D158. CrossRef
    39. Chen, Y., Xiao, Y., Ge, W., Zhou, K., Wen, J., Yan, W., et al. (2013). miR-200b inhibits TGF-beta1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. / Cell Death and Disease, / 4, e541. CrossRef
    40. Xiong, H., Hong, J., Du, W., Lin, Y. W., Ren, L. L., Wang, Y. C., et al. (2012). Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. / Journal of Biological Chemistry, / 287, 5819-832. 10.1074/jbc.M111.295964. CrossRef
    41. Jones, K. B., Salah, Z., Del Mare, S., Galasso, M., Gaudio, E., Nuovo, G. J., et al. (2012). miRNA signatures associate with pathogenesis and progression of osteosarcoma. / Cancer Research, / 72, 1865-877. CrossRef
    42. Li, J., Du, L., Yang, Y., Wang, C., Liu, H., Wang, L., et al. (2013). MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. / Cancer Letters, / 329, 84-0. CrossRef
    43. Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Human Molecular Genetics. 2005; 14 Spec No 1: R121-32.
    44. Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. / Nature, / 451, 147-52. CrossRef
    45. Tie, J., & Fan, D. (2011). Big roles of microRNAs in tumorigenesis and tumor development. / Histology and Histopathology, / 26, 1353-361.
    46. Duan, Z., Choy, E., Harmon, D., Liu, X., Susa, M., Mankin, H., et al. (2011). MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. / Molecular Cancer Therapeutics, / 10, 1337-345. CrossRef
  • 作者单位:Xiaozhou Liu (1)
    Yunlai Liu (2)
    Sujia Wu (3)
    Xin Shi (3)
    Lihong Li (2)
    Jianning Zhao (1)
    Haidong Xu (3)

    1. Department of Orthopedics of Jinling Hospital (Nanjing), School of Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
    2. Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, People’s Republic of China
    3. Department of Orthopedics of Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Rd, Nanjing, 210002, People’s Republic of China
  • ISSN:1559-0283
文摘
Osteosarcoma is the most common primary bone tumor. Recent data indicated miRNAs may be involved in the pathogenesis of osteosarcoma, suggesting some novel targets for therapy. It is known that miR-429 is down-regulated and functions as a tumor suppressor by targeting c-myc and PLGG1 in gastric and breast cancer. However, the exact role of miR-429 in osteosarcoma remained unknown. In our study, we found MiR-429 was down-regulated in primary osteosarcoma lesion and osteosarcoma cell lines. Moreover, MiR-429 can inhibit the proliferation of osteosarcoma cell lines and induce more cell apoptosis. Also, we discovered MiR-429 plays a role in osteosarcoma by binding the 3′UTR of zinc finger E-box-binding homeobox 1 (ZEB1) mRNA, and that overexpression of ZEB1 could reverse the proliferation, subsequently blocking effect of miR-429. In conclusion, miR-429 serves as a tumor suppressor via interaction with ZEB1. Our finding may provide a new target for osteosarcoma therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700