Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection
详细信息    查看全文
  • 作者:Lizhi Yi ; Weihong Jiao ; Ke Wu ; Lihua Qian ; Xunxing Yu ; Qi Xia ; Kuanmin Mao…
  • 关键词:gold nanoparticle ; strain gauge ; self ; assembly ; electron tunneling
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:9
  • 页码:2978-2987
  • 全文大小:2,405 KB
  • 参考文献:[1]Gu茅don, C. M.; Zonneveld, J.; Valkenier, H.; Hummelen, J. C.; van der Molen, S. J. Controlling the interparticle distance in a 2D molecule-nanoparticle network. Nanotech., 2011, 22 125205鈥?25209.CrossRef
    [2]Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500 59鈥?4.CrossRef
    [3]Takei, K.; Yu, Z. B.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl. Acad. Sci. USA, 2014, 111 1703鈥?707.CrossRef
    [4]Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6 2345鈥?352.CrossRef
    [5]Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 2014, 5 3132鈥?139.
    [6]Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater., 2011, 10 424鈥?28.CrossRef
    [7]Tee, B. C.-K. T.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 2012, 7 825鈥?32.CrossRef
    [8]Wang, X. W.; Gu, Y.; Xiong, Z. P.; Zheng, C.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater., 2014, 26 1336鈥?342.CrossRef
    [9]Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano, 2013, 7 8366鈥?378.CrossRef
    [10]Kane, J.; Ong, J.; Saraf, R. F. Chemistry, physics, and engineering of electrically percolating arrays of nanoparticles: A mini review. J. Mater. Chem., 2011, 21 16846鈥?6858.CrossRef
    [11]Hu, B.; Zhang, Y.; Chen, W.; Xu, C.; Wang, Z. L. Self-heating and external strain coupling induced phase transition of VO2 nanobeam as single domain switch. Adv. Mater., 2011, 23 3536鈥?541.CrossRef
    [12]Wu, W. Z; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514 470鈥?74.
    [13]Jiao, W. H.; Yi, L. Z.; Zhang, C.; Wu, K.; Li, J.; Qian, L. H.; Wang, S.; Jiang, Y. T.; Das, B.; Yuan, S. L. Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing. Nanoscale, 2014, 6 13809鈥?3816.CrossRef
    [14]Cai, L.; Song, L.; Luan, P. S.; Zhang, Q.; Zhang, N.; Gao, Q. Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F. et al. Superstretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep., 2013, 3 3048鈥?055.
    [15]Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep., 2012, 2 870鈥?75.
    [16]Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultrasensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun., 2014, 5 3002鈥?009.
    [17]Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage microscale artificial skin. Nat. Mater., 2010, 9 821鈥?26.CrossRef
    [18]Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater., 2012, 11 795鈥?01.CrossRef
    [19]Trung, T. Q.; Tien, N. T.; Kim, D.; Jang, M.; Yoon, O. J.; Lee, N. E. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater., 2014, 24 117鈥?24.CrossRef
    [20]Sangeetha, N. M.; Decorde, N.; Viallet, B.; Viau, G.; Ressler, L. Nanoparticle-based strain gauges fabricated by convective self assembly: Strain sensitivity and hysteresis with respect to nanoparticle sizes. J. Phys. Chem. C, 2013, 117 1935鈥?940.CrossRef
    [21]Wu, K.; Zhang, J. P.; Fan, S. S.; Li, J.; Zhang, C.; Qiao, K. K.; Qian, L. H.; Han, J. B.; Tang, J.; Wang, S. Plasmonenhanced fluorescence of PbS quantum dots for remote near-infrared imaging. Chem. Commun., 2015, 51 141鈥?44.CrossRef
    [22]Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012, 12, 5714鈥?718.
    [23]Zhang, C.; Li, J.; Yang, S. S.; Jiao, W. H.; Xiao, S.; Zou, M. Q.; Yuan, S. L.; Xiao, F.; Wang, S.; Qian, L. H. Closely packed nanoparticle monolayer as strain gauge fabricated by convective assembly at the confined angle. Nano Res., 2014, 7 824鈥?34.CrossRef
    [24]Hong, S. W.; Byun, M.; Lin, Z. Q. Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids. Angew. Chem., Int. Ed., 2009, 48 512鈥?16.CrossRef
    [25]Herrmann, J.; Muller, K. H.; Reda, T.; Baxter, G. R.; Raguse, B.; de Groot, G. J. J. B.; Chai, R.; Roberts, M.; Wieczorek, L. Nanoparticle films as sensitive strain gauges. Appl. Phys. Lett., 2007, 91 1831051鈥?831053.
    [26]Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys., 1963, 34 1793鈥?803.CrossRef
    [27]Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev., 1954, 94 42.
    [28]Bae, S. H.; Lee, Y.; Sharma, B. K.; Lee, H. J.; Kim, J. H.; Ahn, J. H. Graphene-based transparent strain sensor. Carbon, 2013, 51 236鈥?42.CrossRef
  • 作者单位:Lizhi Yi (1)
    Weihong Jiao (1)
    Ke Wu (1)
    Lihua Qian (1)
    Xunxing Yu (2)
    Qi Xia (2)
    Kuanmin Mao (2)
    Songliu Yuan (1)
    Shuai Wang (3)
    Yingtao Jiang (4)

    1. School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
    2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
    3. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
    4. Nevada Nanotechnology Center & Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Nevada, 89154-4026, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The relatively poor dynamic response of current flexible strain gauges has prevented their wide adoption in portable electronics. In this work, we present a greatly improved flexible strain gauge, where one strip of Au nanoparticle (NP) monolayer assembled on a polyethylene terephthalate film is utilized as the active unit. The proposed flexible gauge is capable of responding to applied stimuli without detectable hysteresis via electron tunneling between adjacent nanoparticles within the Au NP monolayer. Based on experimental quantification of the time and frequency domain dependence of the electrical resistance of the proposed strain gauge, acoustic vibrations in the frequency range of 1 to 20,000 Hz could be reliably detected. In addition to being used to measure musical tone, audible speech, and creature vocalization, as demonstrated in this study, the ultrafast dynamic response of this flexible strain gauge can be used in a wide range of applications, including miniaturized vibratory sensors, safe entrance guard management systems, and ultrasensitive pressure sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700