Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications
详细信息    查看全文
  • 作者:Caifu Xie (1) (2)
    Jinchu Zhu (1)
    Shijiang Ding (3)
    Yeming Zhang (2)
    Tai’an Fu (2)
    Zhihong Li (2)
  • 关键词:SHRIMP U ; Pb dating ; Hercynian ; shoshonitic intrusive rocks ; post ; collisional event ; enriched mantle ; Hainan Island
  • 刊名:Chinese Science Bulletin
  • 出版年:2006
  • 出版时间:October 2006
  • 年:2006
  • 卷:51
  • 期:20
  • 页码:2507-2519
  • 全文大小:5736KB
  • 参考文献:1. Nelson K D. Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 1992, 20: 498-02 CrossRef
    2. Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkali-calcic and alkaline post-orogegic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos, 1998, 45: 45-0 CrossRef
    3. Lustrino M. Phanerozoic geodynamic evolution of the circum-Italian realm. Internat Geol Rev, 2000, 42: 724-57 CrossRef
    4. Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources ? A Review. Lithos, 2004, 78: 1-4 CrossRef
    5. Hong D W, Zhang J S, Wang T, et al Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J Asian Earth Sci, 2004, 23: 799-13 CrossRef
    6. Lorenz V, Nicholls I A. Plate and intraplate processes of Hercynian Europe during the late Paleozoic. Tectonophysics, 1984, 107: 25-6 CrossRef
    7. Giovanni M, Dennis V K, Eduardo G, et al. Early Permian Pangea ‘B-to Late Permian Pangea ‘A- Earth Planet Sci Lett, 2003, 215: 379-94 CrossRef
    8. Veevers J J. Gondwanaland from 650-00 Ma assembly through 320 Ma merger in Pangea to 185-00 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev, 2004, 68: 1-32 CrossRef
    9. Matte P. Variscides between the Appalachians and the Urals: similarities and differences between Paleozoic subduction and collision belts. Spec Pap Geol Soc Am, 364, 2002, 239-51
    10. Metcalfe I. Late Palaeozoic and Mesozoic paleogeography of eastern Pangea and Tethys. In: Embry A F, Beauchamp B, Glass D J, eds. Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, 1994, 17: 97-11
    11. Metcalfe I. Gondwana dispersion and Asian accretion: an overview. In: Metcalfe I, ed. Gondwana Dispersion and Asian Accretion: IGCP 321 Final Results Volume. Rotterdam: Balkema Publications, 1999. 9-8
    12. Hutchison C S. Geological Evolution of SE Asia. Oxford: Oxford University Press, 1989. 1-38
    13. Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in southeast Asian: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29: 211-14 CrossRef
    14. Ma W P. Paleotethys in South China, Permian orogeny and the eastwards extension of interchange domain. Sci Geol Sin (in Chinese), 1996, 31(2): 105-13
    15. Zhang N, Xia W C. Time-space distribution of late Paleozoic cherts and evolution of respreading trench in South China. Earth Science -J China Univ. of Geosci (in Chinese), 1998, 23(5): 480-86
    16. Ren J S, Wang Z X, Chen B W, et al. Geotectonics of China in Global Scale—A Brief Explanation to Geotectonic Map of China and Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1999, 1-0
    17. Huang J Q, Chen B W. Tethys Evolution of China and Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1987, 18-0
    18. Hu S Z. On the event of Dongwu Movement and its relation with Permian subdivision. J Stratig (in Chinese), 1994, 18(4): 309-15
    19. Hsü K J, Li J L, Chen H H, et al. Tectonics of South China: key to understanding West Pacific geology. Tectonophysics, 1990, 183: 9-9 CrossRef
    20. Chen H H, Sun S, Li J L, et al. Paleomagnetic constraints on early Triassic tectonics of South China. Sci Geol Sin (in Chinese), 1994, 29(1): 1-
    21. Yin H F, Wu S B, Du Y S, et al. South China defined as part of Tethyan archipelagic ocean system. Earth Sci -J China Univ Geosci (in Chinese), 1999, 24(1): 1-2
    22. Lan C Y, Chung S L, Shen J S, et al. Geochemical and Sr-Nd isotope characteristic of granitic rocks from northern Vietnam. J Asian Earth Sci, 2000, 18: 267-80 CrossRef
    23. Li X H, Zhou H W, Chung S L, et al. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. The Island Arc, 2002, 11: 193-05 CrossRef
    24. Zhou X M. My thinking about granite geneses of South China. Geol J China Univ (in Chinese), 2003, 9(4): 556-65
    25. Zhang B Y, Shi M Q, Yang S F, et al. New evidence of the Paleotethyan orogenic belt on the Guangdong-Guangxi border region, South China Geol Rev (in Chinese), 1995, 41(1): 1-
    26. Wu H R, Kuang G D, Wang Z C. The Yunkai block since Silurian. J Palaeogeograp (in Chinese), 2001, 3(3): 32-0
    27. Wang D Z. The study of granitic rocks in South China: looking back and forward. Geol J China Univ (in Chinese), 2004, 10(3): 305-14
    28. Ma D Q, Zhao Z J, et al. Intrusive rocks in Hainan Island. In: Wang X F, Ma D Q, Jiang D H, eds. Geology of Hainan Island (Part 2) (in Chinese). Beijing: Geological Publishing House, 1991, 1-67
    29. Xie C F, Zhu J C, Zhao Z J, et al. Zircon SHRIMP U-Pb age of the Sanya garnet-acmite syenite: constraints on the Hercynian-Indosinian tectonic evolution of Hainan Island. Geol J China Univ (in Chinese), 2005, 11(1): 47-7
    30. Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13: 97-08 CrossRef
    31. Deng J F, Zhao H L, Mo X X, et al. Continental Root-Plume Tectonics in China: A key to the Continental Dynamics (in Chinese). Beijing: Geological Publishing House, 1996, 1-10
    32. Foley S F, Peccerillo A. Potassic and ultrapotassic magmas and their origin. Lithos, 1992, 28: 181-85 CrossRef
    33. Müller D, Groves D I. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin: Springer-Verlag, 1995, 1-44
    34. Xie C F. A microstructure marker of syntectonic granitoids. Acta Petrol Mineral (in Chinese), 2002, 21(2): 179-85
    35. Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 1976, 58: 63-1 CrossRef
    36. Middlemost E A K. Naming materials in the magma/igneous rock system. Earth Sci Rev, 1994, 37: 215-24 CrossRef
    37. Irvine T N and Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 1971, 8: 523-48
    38. Middlemost E A K. Magmas and Magmatic Rocks. London: Longman, 1985, 1-66
    39. Turner S, Arnaud N, Liu J, et al. Post-collisional, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37: 45-1
    40. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313-45
    41. Hanchar J M, Millar C F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol, 1993, 110: 1-3 CrossRef
    42. Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol, 1987, 97: 205-17 CrossRef
    43. Wysoczanski R J and Allibone A H. Age, correlation, and provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville age detritus on the margin of East Antarctica. J Geol, 2004, 112: 401-16
    44. Chen D G, Deloule E, Ni T. Study on metamorphic zircon U-Pb age and oxygen isotopes of eclogite at Xindian, Dabie terrain. Sci China Ser D-Earth Sci, 2005, 48(8): 691-99
    45. Eklund O, Konopelko D, Rutanen H, et al. 1.8Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield. Lithos, 1998, 45: 87-08 CrossRef
    46. Feldstein S N, Lange R A. Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidences for melting of a subduction-modified mantle. J Petrol, 1999, 40: 1301-320 CrossRef
    47. Janou?ek V, Bowes D R, Rogers G, et al. Modelling diverse processes in the Petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol, 2000, 41: 511-43 CrossRef
    48. López-Moro F J, López-Plaza M. Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos, 2004, 72: 19-4 CrossRef
    49. Li X H, Zhou H W, Liu Y, et al. Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry. Chin Sci Bull, 2000, 45(7): 653-59
    50. Beard J S and Lofgren G E. Dehydration melting and water—saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol, 1991, 32: 365-01
    51. Zinder A, Hart S R. Chemical geodynamics. Ann Rev Earth Planet Sci, 1986, 14: 493-73 CrossRef
    52. Tommasini S, Poli G, Halliday A N. The role of sediment subduction and crustal growth in Hercynian plutonism: isotopic and trace-element evidence from the Sardinia-Corsica Batholith. J Petrol, 1995, 36: 1305-332
    53. Beccaluva L, Bianchini G, Bonadiman C, et al. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos, 2004, 75: 67-7 CrossRef
    54. Li S G, Chen Y Z, Zhang Z Q, et al. Trace elements and Sr, Nd isotopic geochemistry of the Lajimiao norite-gabbro from the North Qinling Belt. Acta Geol Sin (in Chinese), 1993, 67(4): 310-22
    55. Li S G, Nie Y H, Emil J, et al. Recycling of subducted continental crust in Dabie Mountains area—Geochemical evidence. Sci China Ser D-Earth Sci (in Chinese), 1997, 27(5): 412-18
    56. Wang E K, Liu C. Late Peleozoic volcanism in SW Fujian-NE Guangdong area. In: Li J L, ed. Lithospheric Structure and Geological Evolution of Southeast China Continent (in Chinese). Beijing: Metallurgical Industry Press, 1993, 178-86
    57. Gao T J, Wang Z M, Wu K L, et al. Tectono-magmatic Evolution and Metallogenesis of Taiwan Strait and Its Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1999, 72-4
    58. Uyeda S. Subduction zones: an introduction to comparative subductogoy. Tectonophys, 1982, 81: 133-59 CrossRef
    59. Lin H F, Jiang S Y. Geochemistry of radioactive isotopes. In: Chen J, Wang H N, eds. Geochemistry (in Chinese). Beijing: Science Press, 2004, 165
    60. Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 1999, 48: 237-62 CrossRef
    61. Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73: 145-60 CrossRef
    62. Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis Sedona 16 years later. Chem Geol, 1994, 117: 1-6 CrossRef
    63. Glaser S M, Foley S F, Günther D. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos, 1999, 48: 263-85 CrossRef
    64. Ge X Y, Li X H, Chen Z G, et al. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness. Chin Sci Bull, 2002, 47(11): 962-68 CrossRef
    65. Wu F Y, Ge W C, Sun D Y. The definition, discrimination of adakites and their geological role. In: Xiao Q H, Deng J F, Ma D Q, eds. The Ways of Investigation on Granitoids (in Chinese). Beijing: Geological Publishing House, 2002, 172-91
    66. Wendlant R F, Eggler D H. The origins of potassic magmas. Am J Sci, 1980, 280: 421-5 CrossRef
    67. Olafsson M, Eggler D H. Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite. Earth Planet Sci Lett, 1983, 64: 305-15 CrossRef
    68. Li X H, Chung S L, Zhou H W, et al. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In: Malpas J, Fletcher C J N, Ali J R, et al., eds. Aspects of the Tectonic Evolution of China. Geol Soc, Lond, Spec Publ, 2004, 226: 193-15
    69. Xia P, Xu Y G Domains and enrichment mechanism of the lithospheric mantle in western Yunnan: A comparative study on two types of Cenozoic ultrapotassic rocks. Sci China Ser D-Earth Sci, 2005, 48(3): 326-37 CrossRef
    70. Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 2005, 214: 99-25 CrossRef
    71. Duchesne J C, Berza T, Liégeois J P, et al. Shoshonitic liquid line of descent from diorite to granite: the Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos, 1998, 45: 281-03 CrossRef
    72. Ajaji T, Weis D, Giret A, et al. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos, 1998, 45: 371-93 CrossRef
    73. V?is?nen M, M?ntt?ri I, Kriegsman L M, et al. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 2000, 54: 63-1 CrossRef
    74. Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. J Petrol, 2004, 45(3): 555-07 CrossRef
    75. Venturelli G, Thorpe R S, Dal Piaz G V, et al. Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the North-western Alps, Italy. Contrib Mineral Petrol, 1984, 86: 209-20 CrossRef
    76. Küster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the Neoproterozoic East African Orogen: a review. Lithos, 1998, 45: 177-96 CrossRef
    77. Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29-4 CrossRef
    78. Liégeois J P, Naves J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitiods. The use of sliding normalization. Lithos, 1998, 45: 1-8 CrossRef
    79. Davis J H, Blackenourg von F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogenics. Earth Plannet Sci Lett, 1995, 129: 327-43
    80. Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 2003, 37: 35-6
    81. England P C, Houseman G A. Extension during continental convergence, with application to the Tibetan plateau. J Geophys Res, 1989, 94: 17561-7579
    82. Black R, Liégeois J P. Cratons, mobiles, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J Geol Soc, London, 1993, 150: 89-8
    83. Deng W M. Cenozoic volcanism and intraplate subduction in northern margin of the Tibetan plateau. Chin J Geochem, 1991, 10(2): 140-52
    84. Atherton M P, Ghani A A. Slab breakoff: a model for Caledonian, late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 2002, 62: 65-5 CrossRef
    85. Zheng S J, Yan B Q, Huang Q Z. Lithodemic Units Subdivision of Intrusions in Fujian Province (in Chinese). Xiamen: Xiamen University Press, 2000: 1-24
    86. Pan G T, Wang P S, Xu Y R, et al. Cenozoic Tectonic Evolution of Qinghai-Xizang Plateau (in Chinese). Beijing: Geological Publishing House, 1990: 32-8
    87. Liégeois J P. Preface-Some words on the post-collisional magmatism. Lithos, 1998, 45: XV–XVII CrossRef
    88. Li J L, Sun S, Hao J, et al. Time limit of collision event of collision orogens. Acta Petrol Sin (in Chinese), 1999, 15(2): 315-20
    89. Wang X F, Ma D Q, Jiang D. H, et al. Geology of Hainan Island (Part 1), Stratigraphy and Paleontology (in Chinese). Beijing: Geological Publishing House, 1992: 131-92
    90. Zhang Y Q. Foreland thrust and nappe tectonics of Shiwandashan, Guangxi. Geosciences (in Chinese), 1999, 13(2): 150-56
    91. Jin Y G. The pre-Lopingian benthos crisis. Compte Rendu, XII ICCP, Buenos Aires, 1993, 2: 269-78
    92. Liu B P. Tectono-paleogeographic framework of Hercynian-Indosinian stage in South China. In: Wang H Z, ed. Tectonic History of South China Paleo-Continental Margin (in Chinese). Wuhan: China University of Geosciences Press, 1986: 65-7
    93. Wang D Z, Liu C S. Distribution regularities and genetic series of granites of Hercynian-Indosinian cycle in SE China. Acta Petrol Sin (in Chinese), 1986, 2(4): 1-3
    94. Wang Z M, Wang L S, Jiang M Z, et al. Gneissic granite at Chipan, Hualien County, Taiwan Province. Reg Geol of China (in Chinese), 1997, 16(3): 329-34
    95. Deng X G, Chen Z G, Li X H, et al. SHRIMP U-Pb zircon dating of the Darongshan—Shiwandashan granitoid belt in southeastern Guangxi, China. Geol Rev (in Chinese), 2004, 50(4): 426-32
    96. Chen D F, Li X H, Pang J M, et al. Metamorphic newly produced zircons, SHRIMPion microprobe U-Pb age of amphibolite of Hexi Group, Zhejiang and its implications. Acta Miner Sin (in Chinese), 1998, 18(4): 396-00
    97. Wang Q, Li J W, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth Planet Sci Lett, 2005, 230: 339-54 CrossRef
    98. Guo F, Fan W M, Lin G, et al. Sm-Nd isotopic age and genesis of gabbro xenoliths in Daoxian County, Hunan Province. Chin Sci Bull, 1997, 42(21): 1814-817 CrossRef
    99. Qiu J S, McInnes B I A, Xu X X, et al. Zircon ELA-ICP-MS dating for Wuliting pluton at Dajishan, southern Jiangxi and new recognition about its relation to tungsten mineralization. Geol Rev (in Chinese), 2004, 50(2): 125-33
    100. Lei Y H, Ding S J, Ma C Q, et al. Nd isotopic constraints on crustal growth and basement characters of Hainan Island, southern China. Chin J Geol (in Chinese), 2005, 40(3): 439-56
  • 作者单位:Caifu Xie (1) (2)
    Jinchu Zhu (1)
    Shijiang Ding (3)
    Yeming Zhang (2)
    Tai’an Fu (2)
    Zhihong Li (2)

    1. State Key Laboratory for Mineral Deposits Research and Department of Earth Sciences, Nanjing University, Nanjing, 210093, China
    2. Yichang Institute of Geology and Mineral Resources, Yichang, 443003, China
    3. Hainan Bureau of Geology and Mineral Resources, Haikou, 570226, China
  • ISSN:1861-9541
文摘
An identification has been made of some shoshonitic intrusive rocks in central Hainan Island recently. These rocks are K-rich (K2O=2.9%-.1%, K2O/Na2O=0.95-.12), distinctly enriched in LILE and LREE, strongly depleted in Nb, Ta, and moderately depleted in Sr and Ti, with (87Sr/86Sr)i = 0.70859-.71425 and εNd(t) = (?.77–?7.49). They were derived from an EM II-type mantle source. The enrichment process is related to metasomatism of depleted mantle caused by a great amount of fluid-melt released from oceanic crust and terrigenous sediments at great depth (eclogite facies) during the subduction of the South China plate under the Indochina-South China Sea plate in the Carboniferous-Early Permian. A SHRIMP U-Pb zircon dating yields a crystallization age of 272±7 Ma for the shoshonitic intrusions, which is coeval with the strongly peraluminous granites found in central Hainan Island. These two kinds of rocks generally possess syn-intrusion ductile deformation structures. Thus they are considered to have been generated during the early stage (syn-thrust phase) of a post-collisional event. The primary magma of shoshonitic rocks was produced at a depth > 80 km by decompression-dehydration melting of previously enriched lithospheric mantle wedge, phlogopite-bearing garnet peridotite, which was in turn caused by the break-off of a descendent slab and upwelling of a hot asthenosphere. The rising of melts was accompanied by crustal contamination and crystallization fractionation (AFC). Combining with other related data, it is proposed that the southwards subduction and amalgamation of the South China plate with the Indo-China-South China Sea plate took place at ca. 287-78 Ma, which was a part of the convergence process of the Pangea supercontinent. The suture zone was probably located along the line of Song Ma-Beibu Gulf-north margin of the Yunkai Mountains-Wuyi Mountains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700