Liquid-liquid phase transition in water
详细信息    查看全文
  • 作者:ZhaoRu Sun (1)
    Gang Sun (1)
    YiXuan Chen (1)
    LiMei Xu (1)
  • 关键词:liquid ; liquid phase transition ; liquid ; liquid critical point ; water anomalies
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:57
  • 期:5
  • 页码:810-818
  • 全文大小:
  • 参考文献:1. Bellissent-Funel M-C. Hydration Processes in Biology: Theoretical and Experimental Approaches. Amsterdam: ISO Press, 1999
    2. Robinson G W, Zhu S B, Singh S, et al. Water in Biology, Chemistry, and Physics: Experimental Overviews and Computational Methodologies. Singerpore: World Scientific, 1996
    3. Stanley H E, Blumberg R L, Geiger A, et al. Structure and dynamics of the hydrogen bond network in water by computer simulations. In: Proceedings of International Workshop on Structure and Dynamics of Water and Aqueous Solutions: Anomalies and the Possible Implications in Biology. Grenoble: Proc of Inst Laue-Langevin, 1984. 13鈥?0
    4. Debenedetti P G. Metastable Liquids: Concepts and Principles. Princeton: Princeton University Press, 1996
    5. Angell C A. Water and Aqueous Solutions at Subzero Temperatures. New York: Plenum, 1982
    6. Ball P. Water as an active constituent in cell biology. Chem Rev, 2008, 108: 74鈥?08 CrossRef
    7. Franks F. Water: A Matrix of Life. Cambridge: Royal Society of Chemistry, 2000
    8. Debenedetti P G. Supercooled and glassy water. J Phys-Condens Matter, 2003, 15: R1669鈥揜1726 CrossRef
    9. Debenedetti P G, Stanley H E. Supercooled and glassy water. Phys Today, 2003, 56: 40鈥?6 CrossRef
    10. Angell C A. Amorphous water. Ann Rev Phys Chem, 2004, 55: 559鈥?83 CrossRef
    11. Zheligovskaya E A, Malenkov G G. Crystalline water ices. Russ Chem Rev, 2006, 75: 57鈥?6 CrossRef
    12. Ball P. Life鈥檚 Matrix. A Biography of Water. New York: Farrar, Strauss and Giroux, 1999
    13. Angell C A, Shuppert J, Tucker J C. Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to 鈭?8%. J Phys Chem, 1973, 77: 3092鈥?099
    14. Speedy R J, Angell C A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45 / C. J Chem Phys, 1976, 65: 851鈥?58 CrossRef
    15. Stanley H E. Introduction to Phase Transitions and Cirtical Phenomena. New York: Oxford University Press, 1971
    16. Kumar P, Stanley H E. Thermal conductivity minimum: A new water anomaly. J Phys Chem B, 2011, 115: 14269鈥?4273 CrossRef
    17. Angell C A, Oguni M, Sichina WJ. Heat capacity of water at extremes of supercooling and superheating. J Phys Chem, 1982, 86: 998鈥?002
    18. Sato H, Watanabe K, Levelt-Sengers J M H, et al. Sixteen thousand evaluated experimental thermodynamic property data for water and steam. J Phys Chem Ref Data, 1991, 20: 1023鈥?044 CrossRef
    19. Conde O, Teixeira J, Papon P. Analysis of sound velocity in supercoled H2O, D2O, and waterethanol mixtures. J Chem Phys, 1982, 76: 3747鈥?753 CrossRef
    20. Kanno H, Angell C A. Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits. J Chem Phys, 1979, 70: 4008鈥?016 CrossRef
    21. Sastry S, Debenedetti P G, Sciortino F, et al. Singularity-free interpretation of the thermodynamics of supercooled water. Phys Rev E, 1996, 53: 6144鈥?154 CrossRef
    22. Angell C A. Insights into liquid water phases from study of its unusual glass-forming properties. Science, 2008, 319: 582鈥?87 CrossRef
    23. Poole P H, Sciortino F, Essmann U, et al. Phase behavior of metastable water. Nature, 1992, 360: 324鈥?28 CrossRef
    24. Poole P H, Sciortino F, Essmann U, et al. The spinodal of liquid water. Phys Rev E, 1993, 48: 3799鈥?817; Poole P H, Sciortino F, Essmann U, et al. Phase diagram for amorphous solid water. Phys Rev E, 1993, 48: 4605鈥?610; Poole P H, Sciortino F, Essmann U, et al. Line of compressibility maxima in the phase diagram of supercooled water. Phys Rev E, 1997, 55: 727鈥?37 CrossRef
    25. Mishima O, Stanley H E. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature, 1998, 392: 164鈥?68 CrossRef
    26. Mishima O, Stanley H E. The relationship between liquid, supercooled and glassy water. Nature, 1998, 396: 329鈥?35 CrossRef
    27. Sciortino F, Nave L E, Tartaglia P. Physics of the liquid-liquid critical point. Phys Rev Lett, 2003, 91: 155701 CrossRef
    28. Jara D A C, Michelon M F, Antonelli A, et al. Theoretical evidence for a first-order liquid-liquid phase transition in gallium. J Chem Phys, 2009, 130: 221101 CrossRef
    29. Sastry S, Angell C A. Liquid-liquid phase transition in supercooled silicon. Nat Mater, 2003, 2: 739鈥?43 CrossRef
    30. Ashwin S S, Waghmare U V, Sastry S. Metal-to-semimetal transition in supercooled liquid silicon. Phys Rev Lett, 2004, 92: 175701 CrossRef
    31. Vasisht V V, Saw S, Sastry S. Liquidliquid critical point in supercooled silicon. Nat Phys, 2011, 7: 549鈥?53 CrossRef
    32. Katayama Y, Mizutani T, Tsumi K, et al. A first-order liquid-liquid phase transition in phosphorus. Nature, 2000, 403: 170鈥?73 CrossRef
    33. Monaco G, Falconi S, Crichton W A, et al. Nature of the first-order phase transition in fluid phosphorus at high temperature and pressure. Phys Rev Lett, 2003, 90: 255701 CrossRef
    34. Morales M A, Pierleoni C, Schwegler E, et al. Evidence for a firstorder liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proc Natl Acad Sci USA, 2010, 107: 12799鈥?2803 CrossRef
    35. Cadient A, Hu Q Y, Meng Y, et al. First-order liquid-liquid phase transition in Cerium. Phys Rev Lett, 2013, 110: 125503 CrossRef
    36. Greaves G N, Wilding M C, Fearn S, et al. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science, 2008, 322: 566鈥?70 CrossRef
    37. Mishima O, Calvert L D, Whalley E. 鈥楳elting ice鈥?I at 77 K and 10 kbar: A new method of making amorphous solids. Nature, 1984, 310: 393鈥?95 CrossRef
    38. Mishima O, Calvert L D, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature, 1985, 314: 76鈥?8 CrossRef
    39. Mishima O, Takemura K, Aoki K. Visual observations of the amorphous-amorphous transition in H2O under pressure. Science, 1991, 254: 406鈥?08 CrossRef
    40. Mishima O. Reversible first-order transition between two H2O amorphs at 鈭?0.2 GPa and 鈭?135 K. J Chem Phys, 1994, 100: 5910鈥?912 CrossRef
    41. Bellissent-Funel M C, Bosio L, Halbrucker A, et al. Xray and neutron scattering studies of the structure of hyperquenched glassy water. J Chem Phys, 1992, 97: 1282鈥?286 CrossRef
    42. Bellissent-Funel M C, Bosio L. A neutron scattering study of liquid D2O under pressure and at various temperatures. J Chem Phys, 1995, 102: 3727鈥?735 CrossRef
    43. Stanley H E, Kumar P, Franzese G, et al. Liquid polyamorphism: Possible relation to the anomalous behavior of water. Eur Phys J Spec Top, 2008, 161: 1鈥?7 CrossRef
    44. Andersson O. Glassliquid transition of water at high pressure. Proc Natl Acad Sci USA, 2011, 108: 11013鈥?1016 CrossRef
    45. Harrington S, Poole P H, Sciortino F, et al. Equation of state of supercooled SPC/E water. J Chem Phys, 1997, 107: 7443鈥?450 CrossRef
    46. Yamada M, Mossa S, Stanley H E, et al. Interplay between timetemperature-transformation and the liquid-liquid phase transition in water. Phys Rev Lett, 2002, 88: 195701 CrossRef
    47. Poole P H, Saika-Voivod I, Sciortino F. Density minimum and liquidliquid phase transition. J Phys-Condens Matter, 2005, 17: L431鈥揕437 CrossRef
    48. Brovchenko I, Geiger A, Oleinikova A. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. J Chem Phys, 2005, 123: 044515 CrossRef
    49. Paschek D. How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phys Rev Lett, 2004, 94: 217802 CrossRef
    50. Paschek D, Ruppert A, Geiger A, et al. Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-Ew model water. Chem Phys Chem, 2008, 18: 2737鈥?741 CrossRef
    51. Liu Y, Panagiotopoulos A Z, Debenedetti P G. Low-temperature fluidphase behavior of ST2 water. J Chem Phys, 2009, 131: 104508 CrossRef
    52. Abascal J L F, Vega C. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J Chem Phys, 2010, 133: 234502 CrossRef
    53. Meyer M, Stanley H E. Liquid-liquid phase transition in confined water: A Monte-Carlo study. J Chem Phys B, 1999, 103: 9728鈥?730 CrossRef
    54. Stokely K, Mazza M G, Stanley H E, et al. Effect of hydrogen bond cooperativity on the behavior of water. Proc Natl Acad Sci USA, 2010, 107: 1301鈥?306 CrossRef
    55. Li Y, Li J, Wang F. Liquid-liquid transition in supercooled water suggested by microsecond simulations. Proc Natl Acad Sci USA, 2013, 110: 12209鈥?2212 CrossRef
    56. Corsetti F, Artacho E, Soler J M, et al. Room temperature compressibility and the diffusivity anomaly of liquid water from first principles. arXiv:1307.1645
    57. Jeffery C A, Aunstin P H. A new analytic equation of state for liquid water. J Chem Phys, 1999, 110: 484鈥?96 CrossRef
    58. Kiselev S B. Physical limit of stability in supercooled liquids. Int J Thermophys, 2001, 22: 1421鈥?433 CrossRef
    59. Kiselev S B, Ely J F. Parametric crossover model and physical limit of stability in supercooled water. J Chem Phys, 2002, 116: 5657鈥?665 CrossRef
    60. Kalov谩 J, Mares R. Crossover equation and the vapor pressure of supercooled water. Int J Thermophys, 2010, 31: 756鈥?65 CrossRef
    61. Fuentevilla D A, Anisimov M A. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys Rev Lett. 2006, 97: 195702 CrossRef
    62. Bertrand C E, Anisimov M A. Peculiar thermodynamics of the second critical point in supercooled water. J Phys Chem B, 2011, 115: 14099鈥?4111 CrossRef
    63. Franzese G, Malescio G, Skibinsky G, et al. Generic mechanism for generating a liquid-liquid phase transition. Nature, 2001, 409: 692鈥?95 CrossRef
    64. Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature, 2011, 479: 506鈥?09 CrossRef
    65. Holten V, Limmer D T, Molinero V, et al. Nature of the anomalies in supercooled liquid state of the mW model of water. J Chem Phys, 2013, 138: 174501 CrossRef
    66. Soper A K, Ricci M A. Structures of high-density and low-density water. Phys Rev Lett, 2000, 84: 2881鈥?884 CrossRef
    67. Wernet P, Nordlund D, Bergmann U, et al. The sturcture of the first coordination shell in liquid water. Science, 2004, 304: 995鈥?99 CrossRef
    68. Tokushima T, Harada Y, Takahashi O, et al. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem Phys Lett, 2008, 460: 387鈥?00 CrossRef
    69. Huang C, Wikfeldt K T, Tokushima T, et al. The inhomogeneous structure of water at ambient conditions. Proc Natl Acad Sci USA, 2009, 106: 15214鈥?5218 CrossRef
    70. Huang C, Weiss T M, Nordlund D, et al. Increasing correlation length in bulk supercooled HO, DO, and NaCl solution determined from small angle X-ray and neutron diffraction data. J Chem Phys, 2010, 133: 134504 CrossRef
    71. Nilsson A, Pettersson L G M. Perspective on the structure of liquid water. Chem Phys, 2011, 389: 1鈥?4 CrossRef
    72. Nilsson A, Huang C, Pettersson L G M. Fluctuations in ambient water. J Mol Liq, 2012, 176: 2鈥?6 CrossRef
    73. Loerting T, Giovambattista N. Amorphous ices: Experiments and numerical simulations. J Phys-Condens Matter, 2006, 18: R919鈥揜977 CrossRef
    74. Amann-Winkel K, Elsaesser M S, Mayer E, et al. Water polyamorphism: Reversibility and (dis)continuity. J Chem Phys, 2008, 128: 044510 CrossRef
    75. Amann-Winkel K, Mayer E, Loerting T. Equilibrated high-density amorphous ice and its first-order transition to the low-density form. J Phys Chem B, 2011, 115: 14141鈥?4148 CrossRef
    76. Loerting T, Salzmann C, Kohl I, et al. A second distinct structural 鈥渟tate鈥?of high-density amorphous ice at 77 K and 1 bar. Phys Chem Chem Phys, 2001, 3: 5355鈥?357 CrossRef
    77. Finney J L, Bowron D T, Soper A K, et al. Structure of a new dense amorphous ice. Phys Rev Lett, 2002, 89: 205503 CrossRef
    78. Andersson O. Relaxation time of water鈥檚 high-density amorphous ice phase. Phys Rev Lett, 2005, 95: 205503 CrossRef
    79. Andersson O. Dielectric relaxation of the amorphous ices. J Phys-Condens Matter, 2008, 20: 244115 CrossRef
    80. Xu L, Giovambattista N, Buldyrev S, et al. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model. J Chem Phys, 2011, 134: 064507 CrossRef
    81. Giovambattista N, Loerting T, Lukanov B R, et al. Interplay of the glass transition and the liquid-liquid phase transition in water. Sci Rep, 2012, 2: 1鈥? CrossRef
    82. Buldyrev S V, Stanley H E. A system with multiple liquidliquid critical points. Phys A, 2003, 330: 124鈥?29 CrossRef
    83. Brovchenko I, Geiger A, Oleinikova A. Multiple liquidliquid transitions in supercooled water. J Chem Phys, 2003, 118: 9473鈥?476 CrossRef
    84. Loerting T, Schustereder W, Amann-Winkel K. Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. Phys Rev Lett, 2006, 96: 025702 CrossRef
    85. Loerting T, Salzmann C G, Amann-Winkel K, et al. The relation between high-density and very-high-density amorphous ice. Phys Chem Chem Phys, 2006, 8: 2810鈥?818 CrossRef
    86. Amann-Winkel K, Gainaru C, Handle P H. Water鈥檚 second glass transition. Proc Natl Acad Sci USA, 2013, 110: 17720鈥?7725 CrossRef
    87. Stanley H E. Liquid Polymorphism: Advances in Chemical Physics. Hoboken: John Wiley & Sons, 2013. 152 CrossRef
    88. Bellissent-Funel M C, Krongauz M V. Negative velocity correlation in hard sphere fluid. J Chem Phys, 1995, 102: 2881鈥?884 CrossRef
    89. Bartell L S, Huang J. Supercooling of water below the anomalous range near 226 K. J Phys Chem 1994, 98: 7455鈥?457
    90. Maruyama S, Wakabayashi K, Oguni M. Thermal properties of supercooled water confined within silica gel pores. Amer Inst Phys Confer Proc, 2004, 708: 675鈥?76
    91. Xu L, Kumar P, Buldyrev S V, et al. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc Natl Acad Sci USA, 2005, 102: 16558鈥?6562 CrossRef
    92. Xu L, Buldyrev S V, Angell C A, et al. Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys Rev E, 2006, 74: 031108 CrossRef
    93. Xu L, Ehrenberg I, Buldyrev S V, et al. Relationship between the liquidliquid phase transition and dynamic behaviour in the Jagla model. J Phys-Condens Matter, 2006, 18: S2239鈥揝2246 CrossRef
    94. Xu L, Buldyrev S V, Giovambattista N, et al. A monatomic system with a liquid-liquid critical point and two distinct glassy states. J Chem Phys, 2009, 130: 054505 CrossRef
    95. Anisimov M A, Sengers J V, Levelt-Sengers J M H. Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water, Stream and Hydrothermal Solutions. Amsterdam: Elsevier, 2004
    96. Levelt J M H. Measurements of the Compressibility of Argon in the Gaseous and Liquid Phase. Dissertation for Doctoral Degree. Assen: University of Amsterdam, 1958
    97. Michels A, Levelt J M, Wolkers G J. Thermodynamics properties of argon at temperature between 0掳C and 鈭?40掳C and at densities up to 640 amagat (pressures up to 1050 atm). Physica, 1958, 24: 769鈥?94 CrossRef
    98. Michels A, Levelt J M, De Graaff W. Compressibility isotherms of argon at temperatures between 鈭?5掳C and 鈭?55掳C, and at densities up to 640 amagat (pressure up to 1050 atmospheres). Physica, 1958, 24: 659鈥?71 CrossRef
    99. Mishima O. Volume of supercooled water under pressure and the liquid-liquid critical point. J Chem Phys, 2010, 133: 144503 CrossRef
    100. Xu LM, Mallamace F, Yan Z, et al. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat Phys, 2009, 5: 565鈥?69 CrossRef
    101. Chen S H, Mallamace F, Mou C Y, et al. The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA, 2006, 103: 12974鈥?2978 CrossRef
    102. Mallamace F, Broccio M, Corsaro C, et al. Evidence of the low-density liquid phase in supercooled water. Proc Natl Acad Sci USA, 2007, 104: 424鈥?28 CrossRef
    103. Wikfeldt K T, Nilsson A, Pettersson L G M. Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Phys Chem Chem Phys, 2011, 13: 19918鈥?9924 CrossRef
    104. Wikfeldt K T, Huang C, Nilsson A, et al. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water. J Chem Phys, 2011, 134: 214506 CrossRef
    105. Bergman R, Swenson J. Dynamics of supercooled water in confined geometry. Nature, 2000, 403: 283鈥?85 CrossRef
    106. Faraone A, Liu L, Mou C Y, et al. Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys, 2004, 121: 10843鈥?0846 CrossRef
    107. Liu L, Chen S H, Faraone A, et al. Pressure dependence of fragileto-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett, 2005, 95: 117802 CrossRef
    108. Liu D Z, Zhang Y, Chen C C, et al. Observation of the density minimum in deeply supercooled confined water. Proc Natl Acad Sci USA, 2007, 104: 9570鈥?574 CrossRef
    109. Mallamace F, Broccio M, Corsaro C, et al. The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results. J Chem Phys, 2006, 124: 161102 CrossRef
    110. Mallamace F, Broccio M, Corsaro C, et al. Dynamical properties of confined supercooled water: An NMR study. J Phys-Condens Matter, 2006, 18: S2285鈥揝2297 CrossRef
    111. Mallamace F, Corsaro C, Broccio M, et al. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc Natl Acad Sci USA, 2008, 105: 12725鈥?2729 CrossRef
    112. Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting. J Phys-Condes Matter, 2006, 18: R15鈥揜68 CrossRef
    113. Angell C A. Water II is a 鈥渟trong鈥?liquid. J Phys Chem, 1993, 97: 6339鈥?341
    114. Ito K, Moynihan C T, Angell C A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature, 1999, 398: 492鈥?95 CrossRef
    115. Starr F W, Angell C A, Stanley H E. Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature. Phys A, 2003, 323: 51鈥?6 CrossRef
    116. Poole P H, Sciortino F, Grande T, et al. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys Rev Lett, 1994, 73: 1632鈥?635 CrossRef
    117. Tanaka H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: Water as an example. J Phys-Condens Matter, 2003, 15: L703鈥揕711 CrossRef
    118. Kumar P, Han S, Stanley H E. Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement. J Phys-Condens Matter, 2009, 21: 504108 CrossRef
    119. Gallo P, Rovere M, Chen S H. Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement. Phys Chem Lett, 2010, 1: 729鈥?33
    120. Solvetra E G, de la Llave E, Scherlis D A, et al. Melting and crystallization of ice in partially filled nanopores. J Phys Chem B, 2011, 115: 14196鈥?4204
    121. Koga K, Tanaka H, Zeng X C. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature, 2000, 408: 564鈥?67 CrossRef
    122. Koga K. Freezing in one-dimensional liquids. J Chem Phys, 2003, 118: 7973鈥?980 CrossRef
    123. Brovchenko I, Oleinikova A. Interfacial and Confined Water. Amsterdam: Elsevier, 2008
    124. Zangi R. Water confined to a slab geometry: A review of recent computer simulation studies. J Phys-Condens Matter, 2004, 16: S5371鈥揝5388 CrossRef
    125. Kumar P, Buldyrev S V, Starr F W, et al. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys Rev E, 2005, 72: 051503 CrossRef
    126. Giovambattista N, Rossky P J, Debenedetti P G. Phase transitions induced by nanoconfinement in liquid water. Phys Rev Lett, 2009, 102: 050603 CrossRef
    127. Giovambattista N, Debenedetti P G, Rossky P J. Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J Phys Chem C, 2007, 111: 1323鈥?332 CrossRef
    128. Bellissent-Funel M C, Sridi-Dorbez R, Bosio L. X-ray and neutron scattering studies of the structure of water at a hydrophobic surface. J Chem Phys, 1996, 104: 10023鈥?0029 CrossRef
    129. Gallo P, Rovere M. Double dynamical regime of confined water. J Phys-Condens Matter, 2002, 15: 1521鈥?529 CrossRef
    130. Spohr E, Hartnig C, Gallo P, et al. Water in porous glasses. J Mol Liq, 1999, 80: 165鈥?78 CrossRef
    131. Hartnig C, Witschel W, Spohr E, et al. Modifications of the hydrogen bond network of liquid water in a cylindrical SiO2 pore. J Mol Liq, 2000, 85: 127鈥?37 CrossRef
    132. Mazza M G, Stokely K, Pagnotta S E, et al. More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci USA, 2011, 108: 19873鈥?9878 CrossRef
    133. Xu L M, Molinero V. Is there a liquid-liquid transition in confined water? J Phys Chem B, 2011, 115: 14210鈥?4216 CrossRef
    134. Limmer D T, Chandler D. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J Chem Phys, 2011, 135: 134503 CrossRef
    135. Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B, 1983, 28: 784鈥?05 CrossRef
    136. Sciortino F, Saika-Voivod I, Poole P H. Study of the ST2 model of water close to the liquid-liquid critical point. Phys Chem Chem Phys, 2011, 13: 19759鈥?9764 CrossRef
    137. Liu Y, Palmer J C, Panagiotopoulos A Z, et al. Liquid-liquid transition in ST2 water. J Chem Phys, 2012, 137: 214505 CrossRef
    138. Poole P H, Bowles R K, Saika-Voivod I, et al. Free energy surface of ST2 water near the liquid-liquid phase transition. J Chem Phys, 2013, 138: 034505 CrossRef
    139. Palmer J C, Car R, Debenedetti P G. The liquid-liquid transition in supercooled ST2 water: A comparison between umbrella sampling and well-tempered metadynamics. Faraday Discuss, 2013, 167: 77鈥?4 CrossRef
    140. Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys Rev Lett, 2008, 100: 020603 CrossRef
    141. Kesselring T A, Franzese G, Buldyrev S V, et al. Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point. Sci Rep, 2012, 2: 474 CrossRef
    142. Kesselring T A, Lascaris E, Franzese G, et al. Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization. J Chem Phys, 2013, 138: 244506鈥?44518 CrossRef
    143. Kim C U, Barstow B, Tate M W, et al. Evidence for liquid water during the high-density to low-density amorphous ice transition. Proc Natl Acad Sci USA, 2009, 106: 4596鈥?600 CrossRef
    144. Mallamace F, Corsaro C, Stanley H E. Possible relation of water structural relaxation to water anomalies. Proc Natl Acad Sci USA, 2013, 110: 4899鈥?904 CrossRef
    145. Taschin A, Bartolini P, Eramo R, et al. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat Commun, 2013, 4: 2401 CrossRef
  • 作者单位:ZhaoRu Sun (1)
    Gang Sun (1)
    YiXuan Chen (1)
    LiMei Xu (1)

    1. International Center for Quantum Materials, Peking University, Beijing, 100871, China
  • ISSN:1869-1927
文摘
Water shows anomalies different from most of other materials. Different sceniaros have been proposed to explain water anomalies, among which the liquid-liquid phase transition (LLPT) is the most discussed one. It attributes water anomalies to the existence of a hypothesized liquid-liquid critical point (LLCP) buried deep in the supercooled region. We briefly review the recent experimental and theoretical progresses on the study of the LLPT in water. These studies include the discussion on the existence of the first order LLPT in supercooled water and the detection of liquid-liquid critical point. Simulational results of different water models for LLPT and the experimental evidence in confined water are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700