Quantum chemical study on excited states and charge transfer of oxazolo[4,5-b]-pyridine derivatives
详细信息    查看全文
  • 作者:RongXing He (1)
    YanJie Yuan (1)
    Wei Shen (1)
    Ming Li (1) liming@swu.edu.cn
    Li Yao (2)
  • 关键词:oxazolo[4 ; 5 ; b]pyridine – ; spectral properties – ; excited ; state charge transfer – ; protonation – ; DFT calculations
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:55
  • 期:10
  • 页码:2186-2196
  • 全文大小:946.6 KB
  • 参考文献:1. Rodriguez AD, Ramirez C, Rodriguez II, Gonz谩lez E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org Lett, 1999, 1: 527–530
    2. Meyer MD, Hancock AA, Tietje K, Sippy KB, Prasad R, Stout DM, Arendsen DL, Donner BG, Carroll WA. Structure-activity studies for a novel series of N-(arylethyl)-N-(1,2,3,4-tetrahydronaphthalen-1-ylmethyl)-N-methylamines possessing dual 5-HT uptake inhibiting and alpha(2)-antagonistic activities. J Med Chem, 1997, 40: 1049–1062
    3. Sato Y, Yamada M, Yoshida S, Soneda T, Ishikawa M, Nizato T, Suzuki K, Konno F. Benzoxazole derivatives as novel 5-HT3 receptor partial agonists in the gut. J Med Chem, 1998, 41: 3015–3021
    4. Reynold MB, Deluca MR, Kerwin SM. The novel bis(benzoxazole) cytotoxic natural product UK-1 is a magnesium ion-dependent DNA binding agent and inhibitor of human topoisomerase II. Bioorg Chem, 1999, 27: 326–337
    5. Grumel V, Merour JY, Guillaumet G. Synthesis of substituted oxazolo[4,5-b]-pyridine derivatives. Heterocycles, 2001, 55: 1329–1345
    6. Bemis JE, Vu CB, Xie R, Nunes JJ, Ng PY, Disch JS, Milne JC, Carney DP, Lynch AV, Jin L, Smith JJ, Lavu S, Iffland A, Jirousek MR, Perni RB. Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett, 2009, 19: 2350–2353
    7. Viscardi G, Savarino P, Barni E. Carpignano R. Heterocyclic X-azolopyridine intermediates. J Heterocyc Chem, 1990, 27: 1825–1829
    8. Li YM, Xie YS, Zhang R, Jin K, Wang XN, Duan CY. Copper-catalyzed direct oxidative C-H amination of benzoxazoles with formamides or secondary amines under mild conditions. J Org Chem, 2011, 76: 5444–5449
    9. Pla-Dalmau A. 2-(2′-Hydroxyphenyl)benzothiazoles, -benzoxazoles, and -benzimidazoles for plastic scintillation applications. J Org Chem, 1995, 60: 5468–5473
    10. Kanegae Y, Peariso K, Martinez SS. Class of photostable, highly efficient UV dyes: 2-phenylbenzoxazoles. Appl Spectrosc, 1996, 50: 316–319
    11. Eseola AO, Li W, Sun WH, Zhang M, Xiao LW, Woods JAO. Lu minescent properties of some imidazole and oxazole based heterocycles: Synthesis, structure and substituent effects. Dyes Pigments, 2011, 88: 262–273
    12. Coe BJ, Harris JA, Brunschwig BS, Gar铆n J, Orduna J, Coles SJ, Hursthouse MB. Contrasting linear and quadratic nonlinear optical behavior of dipolar pyridinium chromophores with 4-(dimethylamino)phenyl or ruthenium(II) ammine electron donor groups. J Am Chem Soc, 2004, 12: 10418–10427
    13. Burgess K, Jiao GS, Thoresen LH. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment. J Am Chem Soc, 2003, 125: 14668–14669
    14. Willets KA, Callis PR, Moerner WE. Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J Phys Chem B, 2004, 108: 10465–10473
    15. Bard AJ, Lai RY, Kong XX, Jenekhe SA. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule. J Am Chem Soc, 2003, 126: 12631–12639
    16. Li SL, Jiang KJ, Shao KF, Yang LM. Novel organic dyes for efficient dye-sensitized solar cells. Chem Commun, 2006, 2792–2794
    17. Mac M, Baran W, Uchacz T, Baran B, Suder M, L茅sniewski S. Fluorescence properties of the derivatives of oxazolo[4,5-b]pyridyne. J Photochem Photobiol A, 2007, 192: 188–196
    18. Br茅das JL, Pourtois G, Beljonne D, Cornil J, Ratner MA. Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: A quantum-chemical insight. J Am Chem Soc, 2002, 124: 4436–4447
    19. Zerza G, Scharber MC, Brabec CJ, Sariciftci NS, Gomez R, Segura JL, Martin N, Srdanov VI. Photoinduced charge transfer between tetracyano-anthraquino-dimethane derivatives and conjugated polymers for photovoltaics. J Phys Chem A, 2000, 104: 8315–8322
    20. Anstead GM, Katzenellenbogen JA. Design of integrated fluorescent estrogens-The 2nd donor effect on absorption, fluorescence, and ground-state molecular-orbital properties of trans-4,4′-methox-ynitrostilbene systems. J Phys Chem, 1990, 94: 1328–1334
    21. Sobolewski A, Domcke W. Charge transfer in aminobenzonitriles: Do they twist? Chem Phys Lett, 1996, 250: 428–436
    22. Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem Rev, 2003, 103: 3899–4031
    23. Li X, Liang M, Chakraborty A, Kondo M, Maroncelli M. Solvent-controlled intramolecular electron transfer in ionic liquids. J Phys Chem B, 2011, 115: 6592–6607
    24. Sissa C, Painelli A, Blanchard-Desce M, Terenziani F. Fluorescence anisotropy spectra disclose the role of disorder in optical spectra of branched intramolecular-charge-transfer molecules. J Phys Chem B, 2011, 115: 7009–7020
    25. Sung J, Kim P, Lee YO, Kim JS, Kim D. Characterization of ultrafast intramolecular charge transfer dynamics in pyrenyl derivatives: Systematic change of the number of peripheral N,N-dimethyaniline substituents. J Phys Chem Lett, 2011, 2: 818–823
    26. Wei NN, Hao C, Xiu ZL, Chen JW, Qiu JS. Time-dependent density functional theory study on excited-state dihydrogen bonding O-H… H-Ge of the dihydrogen-bonded phenol-triethylgermanium complex. J Comput Chem, 2010, 3: 2853–2858
    27. Yin SH, Liu YF, Zhang W, Guo MX, Song P. Time-dependent density functional theory study on the hydrogen bonding-induced twisted intramolecular charge-transfer excited states of 2-(40-N,N-dime-thylaminophenyl)imidazo[4,5-b]pyridine. J Comput Chem, 2010, 31: 2056–2062
    28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck A,D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision D.02. Wallingford CT: Gaussian, Inc., 2004
    29. He RX, Duan XH, Li XY. Quantum chemical study on excited states and electronic coupling matrix element in a catechol-bridge-dicyanoethylene system. J Phys Chem A, 2005, 109: 4154–4161
    30. Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys, 1998, 108: 664–675
    31. Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652
    32. Duan XH, Li XY, He RX, Cheng XM. Time-dependent density functional theory study on intramolecular charge transfer and solvent effect of dimethylaminobenzophenone. J Chem Phys, 2005, 122: 084314 (1–9)
    33. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett, 1996, 256: 454–464
    34. Bartlett RJ, Hirata S, Ivanov S, Grabowski I. Time-dependent density functional theory employing optimized effective potentials. J Chem Phys, 2002, 116: 6468–6481
    35. Wiberg KB, de Oliveira AE, Trucks G. A comparison of the electronic transition energies for ethene, isobutene, formaldehyde, and acetone calculated using RPA, TDDFT, and EOM-CCSD. Effect of basis sets. J Phys Chem A, 2002, 106: 4192–4199
    36. Adamo C, Barone V. A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem Phys Lett, 2000, 330: 152–160
    37. J枚dicke CJ, L眉thi HP. Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part I. J Chem Phys, 2002, 11: 4146–4156
    38. J枚dicke CJ, L眉thi HP. Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part II. J Chem Phys, 2002, 117: 4157–4167
    39. Barone V, Rega N, Cossi M. Improving performance of polarizable continuum model for study of large molecules in solution. J Comput Chem, 1999, 20: 1186–1198
    40. Truhlar DG, Cramer CJ. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem Rev, 1999, 99: 2161–2200
    41. Klamt A, Jonas V, Burger T, Lohrenz JCW. Refinement and parametrization of COSMO-RS. J Phys Chem A, 1998, 102: 5074–5085
    42. Zhao GJ, Han KL. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J, 2008, 94: 38–46
    43. Zhao GJ, Han KL. Hydrogen bonding in the electronic excited state. Acc Chem Res, 2011, 45: 404–413
    44. Newton MD. Quantum chemical probes of electron-transfer kinetics -The nature of donor-acceptor interactions. Chem Rev, 1991, 91: 767–792
    45. Mikkelsen KV, Ratner MA. Electron-tunneling in solid-state electron-transfer reactions. Chem Rev, 1987, 87: 113–153
    46. Kestner NR, Logan J, Jortner J. Thermal electron-transfer reactions in polar-solvents. J Phys Chem, 1974, 78: 2148–2166
    47. Jortner J. Temperature-dependent activation-energy for electron-transfer between biological molecules. J Chem Phys, 1976, 64: 4860–4867
    48. Cave RJ, Newton MD. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem Phys Lett, 1996, 249: 15–19
    49. Qi Q, Ha YQ, Sun YM. Structural and solvent effects on the spectroscopic properties of 1, 8-naphthalimide derivatives: A density functional study. Int J Quant Chem, 2011, 111: 2234–2241
  • 作者单位:1. College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China2. Department of Physics, Dalian Maritime University, Dalian, 116023 China
  • ISSN:1869-1870
文摘
The excited-state intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The substituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700