A Comparison of Artificial Viscosity, Limiters, and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear Settings
详细信息    查看全文
  • 作者:C. Michoski ; C. Dawson ; E. J. Kubatko ; D. Wirasaet…
  • 关键词:Discontinuous Galerkin ; Nonlinear system ; High order ; Regularization ; Slope limiting ; Spectral filters ; Artificial diffusion ; Artificial viscosity ; Advection ; Diffusion ; Reaction
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:406-434
  • 全文大小:29,006 KB
  • 参考文献:1.Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994). doi:10.​1006/​jcph.​1994.​1148 MathSciNet CrossRef MATH
    2.Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02). ISSN 0036–1429. doi:10.​1137/​S003614290138416​2
    3.Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin methods (Newport, RI, 1999). Lecture Notes in Computer Science Engineering, vol. 11, pp. 89–101. Springer, Berlin (2000)
    4.Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I. Formulation. J. Comput. Phys. 229(5), 1810–1827 (2010). doi:10.​1016/​j.​jcp.​2009.​11.​010 MathSciNet CrossRef MATH
    5.Barth, T., Jesperson, D.C.: The design and application of upwind schems and unstructured meshes. AIAA, paper 89–0366 (1989)
    6.Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit, higher order godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys. 74(1), 1–24 (1988). ISSN 0021–9991. doi:10.​1016/​0021-9991(88)90065-4 . http://​www.​sciencedirect.​com/​science/​article/​B6WHY-4DD1T8P-N0/​2/​aba1bf519b0924a0​a20968665aa37091​
    7.Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17–20), 1548–1562 (2009). doi:10.​1016/​j.​cma.​2009.​01.​008 MathSciNet CrossRef MATH
    8.Bunya, S., Dietrich, J.C., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R., Resio, D.T., Luettich, R.A., Dawson, C., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts, H.J.: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model Development and Validation. Mon. Weather Rev. 138(2), 345–377 (2010). doi:10.​1175/​2009MWR2906.​1 CrossRef
    9.Casoni, E., Peraire, J., Huerta, A.: One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 71(6), 737–755 (2013). doi:10.​1002/​fld.​3682 MathSciNet CrossRef
    10.Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 151–268. Springer, Berlin (1998)
    11.Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)MathSciNet MATH
    12.Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). (electronic)MathSciNet CrossRef MATH
    13.Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNet CrossRef MATH
    14.Cockburn, B., Shu, C.W.: The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141(2), 199–224(1998). ISSN 0021–9991. doi:10.​1006/​jcph.​1998.​5892 . http://​www.​sciencedirect.​com/​science/​article/​B6WHY-45J593T6N/​2/​34d62c09260f2d7d​0af3099d456a3b72​
    15.Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNet CrossRef MATH
    16.Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011). ISSN 0309–1708. doi:10.​1016/​j.​advwatres.​2010.​11.​004 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S030917081000213​7 . New Computational Methods and Software Tools
    17.Dawson, C., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids 52(1), 63–88 (2006). doi:10.​1002/​fjd.​1156 MathSciNet CrossRef MATH
    18.DuChene, M., Spagnuolo, A.M., Kubatko, E., Westerink, J., Dawson, C.: A framework for running the ADCIRC discontinuous Galerkin storm surge model on a GPU. Procedia Comput. Sci. 4, 2017–2026 (2011). doi:10.​1016/​j.​procs.​2011.​04.​220 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S187705091100278​X
    19.Durlofsky, L.J., Engquist, B., Osher, S.: Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98(1), 64–73 (1992). ISSN 0021–9991. doi:10.​1016/​0021-9991(92)90173-V . http://​www.​sciencedirect.​com/​science/​article/​B6WHY-4DD1P88-NW/​2/​14f5775efbf9049e​31e12411e2e34238​
    20.Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press (2003). ISBN 0-19-850588-4
    21.Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. In: Texts in Applied Mathematics, vol. 54. Springer, New York, (2008). ISBN 978-0-387-72065-4. doi:10.​1007/​978-0-387-72067-8 . Algorithms, analysis, and applications
    22.Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61(SI), 86–93 (2012). doi:10.​1016/​j.​compfluid.​2012.​03.​006 MathSciNet CrossRef
    23.Ketcheson, D., Parsani, M., LeVeque, R.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). doi:10.​1137/​110830320 MathSciNet CrossRef MATH
    24.Kloeckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009). doi:10.​1016/​j.​jcp.​2009.​06.​041 MathSciNet CrossRef MATH
    25.Kloeckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous Galerkin method. Math. Model. Nat. Phenom. 6(3), 57–83 (2011). doi:10.​1051/​mmnp/​20116303 MathSciNet CrossRef MATH
    26.Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). ISSN 0045–7825. doi:10.​1016/​j.​cma.​2006.​05.​002 . http://​www.​sciencedirect.​com/​science/​article/​B6V29-4M1CYTM-1/​2/​6c45c85d20d17690​046881a795b0b04d​
    27.Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007a). doi:10.​1016/​j.​jcp.​2006.​08.​005 MathSciNet CrossRef MATH
    28.Kubatko, E.J., Dawson, C., Westerink, J.J.: Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227(23), 9697–9710 (2008). doi:10.​1016/​j.​jcp.​2008.​07.​026 MathSciNet CrossRef MATH
    29.Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009). doi:10.​1007/​s10915-009-9268-2 MathSciNet CrossRef MATH
    30.Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007b). doi:10.​1016/​j.​jcp.​2006.​08.​005 MathSciNet CrossRef MATH
    31.Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). doi:10.​1016/​j.​cma.​2006.​05.​002 CrossRef MATH
    32.Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). doi:10.​1016/​j.​cam.​2009.​05.​028 MathSciNet CrossRef MATH
    33.Kuzmin, D.: Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis. Int. J. Numer. Methods Fluids 71(9), 1178–1190 (2013). doi:10.​1002/​fld.​3707 MathSciNet CrossRef
    34.Kuzmin, D., Schieweck, F.: A parameter-free smoothness indicator for high-resolution finite element schemes. Central Eur. J. Math. 11(8), 1478–1488 (2013). doi:10.​2478/​s11533-013-0254-4 MathSciNet MATH
    35.Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45(6), 2442–2467 (2007). doi:10.​1137/​060666974 . (electronic)MathSciNet CrossRef MATH
    36.Maday, Y., Kaber, S., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation-laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993). doi:10.​1137/​0730016 MathSciNet CrossRef MATH
    37.Meister, A., Ortleb, S., Sonar, Th: Application of spectral filtering to discontinuous Galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. 28(6), 1840–1868 (2012). doi:10.​1002/​num.​20705 MathSciNet CrossRef MATH
    38.Michoski, C., Evans, J.A., Schmitz, P.G., Vasseur, A.: A discontinuous Galerkin method for viscous compressible multifluids. J. Comput. Phys. 229(6), 2249–2266 (2010). doi:10.​1016/​j.​jcp.​2009.​11.​033 MathSciNet CrossRef MATH
    39.Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically \(p\) -enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011). doi:10.​1016/​j.​jcp.​2011.​07.​009 MathSciNet CrossRef MATH
    40.Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Dynamic p-enrichment schemes for multicomponent reactive flows. Adv. Water Resour. 34(12), 1666–1680 (2011). ISSN 0309–1708. doi:10.​1016/​j.​advwatres.​2011.​09.​001 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S030917081100167​9
    41.Michoski, C., Evans, J.A., Schmitz, P.G.: Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors i: Quiescent reactors. Preprint (2013)
    42.Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22(5), 947–961 (1985)MathSciNet CrossRef MATH
    43.Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. Preprint (2013)
    44.Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006). doi:10.​1090/​S0025-5718-05-01772-2 . (electronic)MathSciNet CrossRef MATH
    45.Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNet CrossRef MATH
    46.Tadmor, Eitan, Waagan, Knut: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012). doi:10.​1137/​110836456 MathSciNet CrossRef MATH
    47.Thomas, J.W.: Numerical partial differential equations: finite difference methods. In: Texts in Applied Mathematics, vol. 22. Springer, New York (1995). ISBN 0-387-97999-9
    48.Wirasaet, D., Tanaka, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals. Int. J. Numer. Methods Fluids 64(10–12), 1336–1362 (2010). ISSN 0271–2091. doi:10.​1002/​fld.​2376 . 15th International Conference on Finite Elements in Flow Problems, Tokyo, Japan, April 01–03, 2009
    49.Xin, J.G., Flaherty, J.E.: Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws. Appl. Numer. Math. 56(3–4), 444–458 (2006). ISSN 0168–9274. doi:10.​1016/​j.​apnum.​2005.​08.​001 . 3rd International Conference on Numerical Solutions of Volterra and Delay Equations, Tempe, AZ, May, 2004
    50.Xing, Y., Shu, C.W.: High-order finite volume weno schemes for the shallow water equations with dry states. Adv. Water Resour. 34(8), 1026–1038 (2011). ISSN 0309–1708. doi:10.​1016/​j.​advwatres.​2011.​05.​008 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S030917081100099​6
    51.Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). ISSN 0309–1708. doi:10.​1016/​j.​advwatres.​2010.​08.​005 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S030917081000149​1
    52.Zingan, V., Guermond, J.-L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013). doi:10.​1016/​j.​cma.​2012.​08.​018 MathSciNet CrossRef MATH
    53.Zingan, V.N.: Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization. Dissertation, Texas A&M University (2012)
  • 作者单位:C. Michoski (1)
    C. Dawson (1)
    E. J. Kubatko (2)
    D. Wirasaet (3)
    S. Brus (3)
    J. J. Westerink (3)

    1. Institute for Computational Engineering and Sciences (ICES), Computational Hydraulics Group (CHG), University of Texas at Austin, Austin, TX, 78712, USA
    2. Department of Civil and Environmental Enineering and Geodetic Science, The Ohio State University, Columbus, OH, 43210, USA
    3. Computational Hydraulics Laboratory, Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
Nonlinear systems of equations demonstrate complicated regularity features that are often obfuscated by overly diffuse numerical methods. Using a discontinuous Galerkin finite element method, we study a nonlinear system of advection–diffusion–reaction equations and aspects of its regularity. For numerical regularization, we present a family of solutions consisting of: (1) a sharp, computationally efficient slope limiter, known as the BDS limiter, (2) a standard spectral filter, and (3) a novel artificial diffusion algorithm with a solution-dependent entropy sensor. We analyze these three numerical regularization methods on a classical test in order to test the strengths and weaknesses of each, and then benchmark the methods against a large application model. Keywords Discontinuous Galerkin Nonlinear system High order Regularization Slope limiting Spectral filters Artificial diffusion Artificial viscosity Advection Diffusion Reaction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700