Role of granite intrusions for the formation of ring structures in granulite complexes: Examples from the Limpopo belt, South Africa
详细信息    查看全文
  • 作者:L. L. Perchuk (1) (2) (3)
    D. D. van Reenen (2)
    C. A. Smit (2)
    R. Boshoff (2)
    G. A. Belyanin (2)
    V. O. Yapaskurt (1)
  • 刊名:Petrology
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:16
  • 期:7
  • 页码:652-678
  • 全文大小:1725KB
  • 参考文献:1. L. Ya. Aranovich and R. C. Newton, “H2O Activity in Concentrated NaCl Solutions at Pressures and Temperatures Measured by the Brucite-Periclase Equilibrium,-Contrib. Mineral. Petrol. 125, 200-12 (1996). CrossRef
    2. J. M. Barton Jr., M. C. du Toit, D. D. van Reenen, and B. Ryan, “Geochronological Studies in the SMZ of the Limpopo Mobile Belt, Southern Africa,-Geol. Soc. S. Afr. Spec. Publ. 8, 55-4 (1983).
    3. J. M. Barton, Jr., R. Doig, C. B. Smith, et al., “Isotopic and REE Characteristics of the Intrusive Charnoenderbite and Enderbite Geographically Associated with the Matok Complex,-Precambrian Res. 55, 451-67 (1992). CrossRef
    4. M. Berger, J. D. Kramers, and T. F. N?gler, “Geochemistry and Geochronology of Charnoenderbites in Northern Marginal Zone of the Limpopo Belt, Southern Africa, and Genetic Models,-Schweiz. Mineral. Petrogr. Mitt. 75, 17-2 (1995).
    5. T. G. Blenkinsop, A. Kr?ner, and V. Chiwara, “Single Stage, Late Achaean Exhumation of Granulites in the Northern Marginal Zone, Limpopo Belt, Zimbabwe, and Relevance to Gold Mineralization at Renco Mine,-S. Afr. J. Geol. 107, 377-96 (2004). CrossRef
    6. R. Boshoff, / Formation of Major Fold Types during Distinct Geological Events in the Central Zone of the Limpopo Belt, South Africa: New Structural, Metamorphic and Geochronologic Data, MS Thesis (University of Johannesburg, 2004).
    7. R. Boshoff, D. D. van Reenen, C. A. Smit, et al., “Geologic History of the Central Zone of the Limpopo Complex: The West Alldays Area,-J. Geol. 114, 699-16 (2006). CrossRef
    8. G. P. Brey and T. Kohler, “Geothermobarometry in Four-Phase Lherzolites: II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers,-J. Petrol. 31, 1353-378 (1990).
    9. E. Burov, C. Jaupart, and L. Guillou-Frottier, “Ascent and Emplacement of Buoyant Magma Bodies in Brittle-Ductile Upper Crust,-J. Geophys. Res. 108, 2177-189 (2003). CrossRef
    10. M. J. de Wit, “Achaean Tectonics: Wading through a Mine-Field of Controversies,-in / Proceedings of 4th International Archaean Symposium, Perth, Australia, 2001, (AGSO, Perth, 2001), p. 8.
    11. M. J. de Wit, C. Roering, R. J. Hart, et al., “Formation of an Archean Continent,-Nature 357, 553-62 (1992). CrossRef
    12. V. I. Fonarev and A. A. Graphchikov, “Two-Pyroxene Thermometry: A Critical Evaluation,-in / Progress in Metamorphic and Magmatic Petrology, Ed. by L. L. Perchuk (Cambridge Univ., Cambridge, 1991), pp. 65-2.
    13. M. L. Furman and D. H. Lindsley, “Ternary-Felfspar Modelling and Thermometry,-Am. Mineral. 73, 201-15 (1988).
    14. Geology of Granulites (Guide), Ed. by F. A. Letnikov (Irkutsk, 1981).
    15. T. V. Gerya and J.-P. Burg, “Intrusion of Ultramafic Magmatic Bodies into the Continental Crust: Numerical Simulation,-Phys. Earth Planet. Inter. 160, 124-42 (2007). CrossRef
    16. T. V. Gerya, L. L. Perchuk, D. D. van Reenen, and C. A. Smit, “Two-Dimensional Numerical Modeling of Pressure-Temperature-Time Paths for the Exhumation of Some Granulite Facies Terrains in the Precambrian,-J. Geodynamics 30, 17-5 (2000). CrossRef
    17. T. V. Gerya, L. L. Perchuk, W. V. Maresch, et al., “Thermal Regime and Gravitational Instability of Multi-Layered Continental Crust: Implications for the Buoyant Exhumation of High-Grade Metamorphic Rocks,-Eur. J. Mineral. 14, 687-99 (2002). CrossRef
    18. V. G. Gurovich, V. N. Zemlyanukhin, E. P. Emel’yanenko, et al., / Konder Massif and Its Mineral Deposits (Nauka, Moscow, 1994) [in Russian].
    19. D. J. Henry and L. G. Medaris, “Applications of Pyroxene and Olivine-Spinel Geothermometers to the Alpine Peridotites in Southwestern Montana,-Am. Mineral. 61, 1117-144 (1976).
    20. K. Hisada, L. L. Perchuk, T. V. Gerya, et al., “P-T-Fluid Evolution in the Mahalapye Complex, Limpopo High-Grade Terrane, Eastern Botswana,-J. Metamorph. Geol. 23, 313-34 (2005). CrossRef
    21. L. Holzer, R. Frey, J. M. Barton, Jr., and J. D. Kramers, “Unraveling the Record of Successive High-Grade Event in the Central Zone of the Limpopo Belt Using Pb Single Phase Dating of Metamorphic Minerals,-Precambrian Res. 87, 87-15 (1998). CrossRef
    22. L. Holzer, J. M. Barton, Jr., B. K. Paya, and J. D. Kramers, “Tectonothermal History of the Western Part of the Limpopo Belt: Tectonic Models and New Perspectives,-J. Afr. Earth Sci. 28, 383-02 (1999). CrossRef
    23. D. R. Hunter and C. W. Stowe, “A Historical Review of the Origin, Composition, and Settings of Archean Greenstone Belts (pre-1980),-in / Greenstone Belts, Ed by M. J. de Wit and L. D. Ashwal (Oxford Univ., Oxford, 1997), pp. 5-9.
    24. P. Jaeckel, A. Kr?ner, S. L. Kamo, et al., “Late Archean to Early Proterozoic Granitoid Magmatism and High-Grade Metamorphism in the Limpopo Belt, South Africa,-J. Geol. Soc. (London) 154, 25-4 (1997). CrossRef
    25. K. Kreissig, L. Holzer, R. Frei, et al., “Geochronology of the Hout River Shear Zone and the Metamorphism in the Southern Marginal Zone of the Limpopo Belt, Southern Africa,-Precambrian Res. 109, 145-73 (2000). CrossRef
    26. R. Kretz, “Transfer and Exchange Equilibria in a Portion of the Pyroxene Quadrilateral As Deduced from Natural and Experimental Data,-Geochim. Cosmochim. Acta 46, 411-21 (1982). CrossRef
    27. A. Kr?ner, P. Jaeckel, G. Brandl, et al., “Single Zircon Ages for Granitoid Gneisses in the Central Zone of the Limpopo Belt, Southern Africa, and Geodynamic Significance,-Precambrian Res. 93, 299-37 (1999). CrossRef
    28. F. A. Letnikov, / Granitoids of Block Terranes (Nauka, Moscow, 1973) [in Russian].
    29. D. H. Lindsley, “Phase Equilibria of Pyroxenes at Pressure > 1 Atmosphere-in / Pyroxenes, Ed. by Ch. T. Prewitt, Rev. Mineral. 7, 289-07 (1980).
    30. A. M. Macgregor, “Some Milestones in the Precambrian of Southern Rhodesia,-Trans. Geol. Soc. S. Afr. 54, 27-1 (1951).
    31. L. Millonig, A. Zeh, A. Gerdes, and R. Klemd, “Neoarchean High-Grade Metamorphism in the Central Zone of the Limpopo Belt (South Africa): Combined Petrological and Geochronological Evidence from the Bulai Pluton,-Lithos (2007), doi:10.1016/j.lithos.2007.10.001.
    32. S. Mkweli, B. S. Kamber, and M. Berger, “Westward Continuation of the Craton-Limpopo Belt Break in Zimbabwe and New Age Constrains on the Timing of the Thrusting,-J. Geol. Soc. (London) 152, 77-3 (1995). CrossRef
    33. A. Nicolas and J. P. Poirier, / Crystalline Plasticity and Solid State Flow in Metamorphic Rocks (Wiley, New York, 1976).
    34. C. W. Passchier and R. A. J. Trouw, / Microtectonics (Springer, Berlin, 1995).
    35. C. W. Passchier, J. S. Myers, and A. Kr?ner, / Field Geology of High Grade Gneiss Terrains, (Springer, Berlin, 1990).
    36. L. L. Perchuk, “The Course of Metamorphism,-Int. Geol. Rev. 28, 1377-400 (1987).
    37. L. L. Perchuk, -em class="a-plus-plus">P-T-Fluid Regimes of Metamorphism and Related Magmatism with Specific Reference to the Baikal Lake Granulites,-in / Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. Spec. Publ. 42, 275-91 (1989).
    38. L. L. Perchuk, “Studies in Magmatism, Metamorphism, and Geodynamics,-Int. Geol. Rev. 33, 311-74 (1991). CrossRef
    39. L. L. Perchuk, “Configuration of / PT Trends as a Record of High-Temperature Polymetamorphism,-Dokl. Akad. Nauk 401, 217-20 (2005) [Dokl. Earth Sci. 401, 311-14 (2005)].
    40. L. L. Perchuk, / Local Equilibria and P-T Evolution of. Deep-Seated Metamorphic Complexes (IGEM RAN, Moscow, 2006) [in Russian].
    41. L. L. Perchuk and I. V. Lavrent’eva, “Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite,-in / Advances in Physical Geochemistry 3, 199-39 (1983).
    42. L. L. Perchuk and I. D. Ryabchikov, / Phase Correspondence in Mineral Systems (Nedra, Moscow, 1976) [in Russian].
    43. L. L. Perchuk and D. D. van Reenen, “On the Problem of the Mechanism of Gravitational Redistribution,-Dokl. Akad. Nauk (in press).
    44. L. L. Perchuk, L. Ya. Aranovich, K. K. Podlesskii, et al., “Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR,-J. Metamorph. Geol. 3, 265-10 (1985). CrossRef
    45. L. L. Perchuk, Yu. Yu. Podladchikov, and A. N. Polyakov, “Geodynamic Modeling of Some Metamorphic Processes,-J. Metamorph. Geol. 10, 311-18 (1992). CrossRef
    46. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, et al., “The Limpopo Metamorphic Belt, South Africa: 2. Decompression and Cooling Regimes of Granulites and Adjacent Rocks of the Kaapvaal Craton,-Petrologiya 4, 619-48 (1996) [Petrology 4, 571-99 (1996)].
    47. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smit, “Formation and Dynamics of Granulite Complexes within Cratons,-Gondwana Res. 4, 729-32 (2001). CrossRef
    48. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smit, -em class="a-plus-plus">P-T Paths and Problems of High-Temperature Polymetamorphism,-Petrologiya 14, 131-67 (2006) [Petrology 14, 117-53 (2006)].
    49. L. L. Perchuk, D. D. van Reenen, D. A. Varlamov, et al., -em class="a-plus-plus">P-T Record of Two High-Grade Metamorphic Events in the central Zone of the Limpopo Complex, South Africa,-Lithos 103, 70-05 (2008). CrossRef
    50. H. Ramberg, / Gravity, Deformation and the Earth’s Crust (Academic Press, London-New-York-Toronto-San Francisco, 1981).
    51. J. Ridley, “On the Origin and Tectonic Significance of the Charnockite Suite of the Archean Limpopo Belt, Northern Marginal Zone, Zimbabwe,-Precambrian Res. 55, 497-26 (1992). CrossRef
    52. C. Roering, D. D. van Reenen, C. A. Smit, et al., “Tectonic Model for the Evolution of the Limpopo Belt,-Precambrian Res. 55, 539-52 (1992). CrossRef
    53. H. R. Rollinson and T. Blenkinsop, “The Magmatic, Metamorphic, and Tectonic Evolution of the Northern Marginal Zone of the Limpopo Belt in Zimbabwe,-J. Geol. Soc. (London) 152, 66-5 (1995).
    54. K. I. Shmulovich, / Carbon Dioxide in High-Temperature Mineral-Forming Processes (Nauka, Moscow, 1988) [in Russian].
    55. K. I. Shmulovich and N. V. Plyasunova, “Phase Equilibria in the System H2O-CO2-Salt (CaCl2, NaCl) at High Pressures and Temperatures,-Geochem. Int. 5, 666-84 (1993).
    56. C. A. Smit, D. D. van Reenen, T. V. Gerya, and L. L. Perchuk, -em class="a-plus-plus">P-T Conditions of Decompression of the Limpopo High-Grade Terrain: Record from Shear Zones,-J. Metamorph. Geol. 19, 249-68 (2001). CrossRef
    57. A. A. Tomilenko and V. P. Chupin, / Thermobarogeochemistry of Metamorphic Complexes (Nauka, Novosibirsk, 1983) [in Russian].
    58. D. D. van Reenen and C. A. Smit, “The Limpopo Metamorphic Belt, South Africa: 1. Geological Setting and Relationship of the Granulite Complex with the Kaapvaal and Zimbabwe Cratons,-Petrology 4, 610-18 (1996).
    59. D. D. van Reenen, R. Boshoff, L. L. Perchuk, et al., “Geochronological Problems of the Central Zone of the Limpopo Complex, South Africa,-Gondwana Res. (in press).
  • 作者单位:L. L. Perchuk (1) (2) (3)
    D. D. van Reenen (2)
    C. A. Smit (2)
    R. Boshoff (2)
    G. A. Belyanin (2)
    V. O. Yapaskurt (1)

    1. Faculty of Geology, Moscow State University, Moscow, 119899, Russia
    2. Department of Geology, University of Johannesburg, PO Box 524, 2006 Auckland Park, Johannesburg, South Africa
    3. Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
  • ISSN:1556-2085
文摘
Ring structures are cylindrical or sheath folds with concentrically distributed beds, often with granites in the cores. This paper reports structural, petrographic, and petrological evidence for four such structures from the Central Zone of the Limpopo complex, which were formed during granulite exhumation in Neoarchean time (event D2/M2). It was demonstrated that the orientation of linear and planar elements in the rocks are practically identical and independent of the position within the Central Zone. All existing measurements (hundreds for the four structures) project within the same fields in stereograms. The fold axes plunge SW at an angle of ?0° within the whole area of the Central Zone of the Limpopo complex. This implies that the rocks were metamorphosed and deformed during event D2/M2, which is typical of the Neoarchean stage of the development of the Limpopo granulite complex. Local mineral equilibria and fluid inclusions were studied in a series of key rocks, and P-T paths were derived for them. A gravitation mechanism was substantiated for the ascent of granulites and accompanying granite bodies. The structure of ring complexes was evaluated on the basis of various erosion sections. It was shown that stocklike granite bodies occur at the base of each ring structure. Petrochemical and structural data were used to demonstrate that the granites (2627 Ma) had been derived by the complete or partial melting of the lower parts of the section of Neoarchean (2651 Ma) country rocks. The upwelling of a less dense granite magma synchronously with the exhumation resulted in the helical squeezing of the overlying gneisses. This led to the concentric arrangement of beds and development of a ring structure, a sheath fold containing a granite core in some sections. A preliminary numeric 2D model is considered for the ascent of a granite diapir accompanied by the downwelling of colder and denser country rocks. A better understanding of this process can be gained by 3D numerical simulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700