Interface dipole enhancement effect and enhanced Rayleigh scattering
详细信息    查看全文
  • 作者:Wenyun Wu (1)
    Jingying Yue (1)
    Dongqi Li (1)
    Xiaoyang Lin (1)
    Fangqiang Zhu (2)
    Xue Yin (3)
    Jun Zhu (3)
    Xingcan Dai (1)
    Peng Liu (1)
    Yang Wei (1)
    Jiaping Wang (1)
    Haitao Yang (1)
    Lina Zhang (1)
    Qunqing Li (1)
    Shoushan Fan (1)
    Kaili Jiang (1) (4)

    1. State Key Laboratory of Low-Dimensional Quantum Physics
    ; Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center ; Tsinghua University ; Beijing ; 100084 ; China
    2. Department of Physics
    ; Indiana University-Purdue University Indianapolis ; Indianapolis ; Indiana ; USA
    3. State Key Laboratory of Precision Measurement Technology and Instruments
    ; Department of Precision Instruments ; Tsinghua University ; Beijing ; 100084 ; China
    4. Collaborative Innovation Center of Quantum Matter
    ; Beijing ; 100084 ; China
  • 关键词:interface dipole enhancement ; dielectric sphere ; near filed ; nanomaterials ; carbon nanotubes ; Rayleigh scattering
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:303-319
  • 全文大小:3,661 KB
  • 参考文献:1. Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. Carbon nanotubes in water: Structural characteristics and energetics. / J. Phys. Chem. B. 2001, / 105, 9980鈥?987. CrossRef
    2. Huang, B. D.; Xia, Y. Y.; Zhao, M. W.; Li, F.; Liu, X. D.; Ji, Y. J.; Song, C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. / J. Chem. Phys. 2005, / 122, 0847088.
    3. Wu, W. Y.; Yue, J. Y.; Lin, X. Y.; Li, D. Q.; Zhu, F. Q.; Yin, X.; Zhu, J.; Wang, J. T.; Zhang, J.; Chen, Y.; et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates by enhanced Rayleigh scattering. 2014, submitted.
    4. Ashcroft, N. W.; Mermin, N. D. / Solid State Physics; Saunders College: New York, 1976.
    5. Fabelinskii, I. L. / Molecular Scattering of Light; Plenum Press: New York, 1968. CrossRef
    6. Sargent III, M.; Scully, M. O.; Lamb Jr, W. E. / Laser Physics; Addison Wesley: New York, 1974.
    7. Feynman, R. P.; Leighton, R. B.; Sands, M. / The Feynman Lectures on Physics, Mainly Electromagnetism and Matter, Volume II; Addison-Wesley: Reading, Massachusetts, 1977.
    8. Kittel, C. / Introduction to Solid State Physics (8th edition); Wiley: New York, 2004.
    9. Jackson, J. D. / Classical Electrodynamics (3rd edition); Wiley: New York, 1998.
    10. Maier, S. A. / Plasmonics: Fundamentals and Applications; Springer: New York, 2007.
    11. Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. / J. Phys. Chem. B. 2001, / 105, 1123鈥?134. CrossRef
    12. Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O鈥橞rien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. / Science 2004, / 306, 1540鈥?543. CrossRef
    13. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Exciton photophysics of carbon nanotubes. / Annu. Rev. Phys. Chem. 2007, / 58, 719鈥?47. CrossRef
    14. Berciaud, S.; Voisin, C.; Yan, H. G.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. / Phys. Rev. B. 2010, / 81, 041414. CrossRef
    15. Joh, D. Y.; Kinder, J.; Herman, L. H.; Ju, S. Y.; Segal, M. A.; Johnson, J. N.; ChanGarnet, K. L.; Park, J. Single-walled carbon nanotubes as excitonic optical wires. / Nat. Nanotech. 2011, / 6, 51鈥?6. CrossRef
    16. Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O鈥橞rien, S.; Misewich, J. A.; Heinz, T. F.; et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. / Science 2006, / 312, 554鈥?56. CrossRef
    17. Joh, D. Y.; Herman, L. H.; Ju, S. Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G. K. L.; Park, J. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. / Nano Lett. 2011, / 11, 1鈥?. CrossRef
    18. Lefebvre, J.; Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. / Nano Res. 2011, / 4, 788鈥?94. CrossRef
    19. Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G.; et al. An atlas of carbon nanotube optical transitions. / Nat. Nanotech. 2012, / 7, 325鈥?29. CrossRef
    20. Liu, K. H.; Hong, X. P.; Zhou, Q.; Jin, C. H.; Li, J. H.; Zhou, W. W.; Liu, J.; Wang, E. G.; Zettl, A.; Wang, F. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. / Nat. Nanotech. 2013, / 8, 917鈥?22. CrossRef
    21. MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. / J. Phys. Chem. B. 1998, / 102, 3586鈥?616. CrossRef
    22. Hatcher, E. R.; Guvench, O.; MacKerell Jr, A. D. CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. / J. Chem. Theory Comput. 2009, / 5, 1315鈥?327. CrossRef
    23. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. / J. Chem. Phys. 1983, / 79, 926鈥?35. CrossRef
    24. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kal茅, L.; Schulten, K. Scalable molecular dynamics with NAMD. / J. Comput. Chem. 2005, / 26, 1781鈥?802. CrossRef
    25. Ryckaert, J-P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of / n-alkanes. / J. Comput. Phys. 1977, / 23, 327鈥?41. CrossRef
    26. Miyamoto, S.; Kollman, P. A. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. / J. Comput. Chem. 1992, / 13, 952鈥?62. CrossRef
    27. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An / N log ( / N) method for Ewald sums in large systems. / J. Chem. Phys. 1993, / 98, 10089鈥?0092. CrossRef
    28. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. / J. Chem. Phys. 1995, / 103, 4613鈥?621. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interfacial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700