Phragmén-Lindelöf Theorems and p-harmonic Measures for Sets Near Low-dimensional Hyperplanes
详细信息    查看全文
  • 作者:Niklas L. P. Lundström
  • 关键词:Global estimates ; Growth of p ; harmonic functions ; Infinity Laplace ; Phragmén ; Lindelöf ; Subharmonic ; Quasi ; linear
  • 刊名:Potential Analysis
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:44
  • 期:2
  • 页码:313-330
  • 全文大小:331 KB
  • 参考文献:1.Adamowicz, T.: Phragmén-Lindelöf theorems for equations with nonstandard growth. Nonlinear Anal. Theory, Methods Appl. 97, 169–184 (2014)CrossRef MathSciNet MATH
    2.Adamowicz, T., Lundström, N.L.P.: The boundary Harnack inequality for variable exponent p-Laplacian, Carleson estimates, barrier functions and p(·)-harmonic measures. Annali di Matematica Pura ed Applicata doi:10.​1007/​s10231-015-0481-3
    3.Adams, D.R., Hedberg, L.I.: Function spaces and potential theory Vol. 314. Springer Science & Business Media (1996)
    4.Ahlfors, L.: On Phragmén-Lindelöf’s principle. Trans. Amer. Math. Soc. 41, 1–8 (1937)MathSciNet
    5.Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for p-harmonic functions in smooth euclidean domains. Potential Anal. 26, 281–301 (2007)CrossRef MathSciNet MATH
    6.Armstrong, S.N., Sirakov, B., Smart, C.K.: Singular solutions of fully nonlinear elliptic equations and applications. Arch. Ration. Mech. Anal. 205(2), 345–394 (2012)CrossRef MathSciNet MATH
    7.Armstrong, S.N., Smart, C.K.: An easy proof of Jensens theorem on the uniqueness of infinity harmonic functions. Calc. Var. 37(3–4), 381–384 (2010)CrossRef MathSciNet MATH
    8.Avelin, B., Lundström, N.L.P.: Boundary estimates for solutions to operators of p-Laplace type with lower order terms. J. Differ. Eqn. 250(1), 264–291 (2011)
    9.Avelin, B., Lundström, N.L.P., Nyström, K.: Optimal doubling, Reifenberg flatness and operators of p-Laplace type. Nonlinear Anal.: Theory, Methods Appl. 74 (17), 5943–5955 (2011)CrossRef MATH
    10.Barles, G., Busca, J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Eqn. 26, 2323–2337 (2001)CrossRef MathSciNet MATH
    11.Bennewitz, B., Lewis, J.: On the dimension of p-harmonic measure. Ann. Acad.Sci. Fenn. Math. 30, 459–505 (2005)MathSciNet MATH
    12.Bhattacharya, T.: An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron. J. Differ. Eqn. 2001(44), 1–8 (2001)
    13.Bhattacharya, T.: On the properties of ∞-harmonic functions and an application to capacitary convex rings. Electron. J. Differ. Eqn. 2002 (101), 1–22 (2002)
    14.Bhattacharya, T.: On the behaviour of infinity-harmonic functions on some special unbounded domains. Pac. J. Math. 219(2), 237–253 (2005)CrossRef MATH
    15.Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as p→ of Δ p u p = f and related extremal problems, Rendiconti Seminars Matematicas University Polonicum Torino, Fascicolo Speciale Nonlinear PDEs, 15–68 (1989)
    16.Caffarelli, L., Fabes, E., Mortola, S., Salsa, S: Boundary behaviour of nonnegative solutions of elliptic operators in divergence form. Indiana J. Math 30(4), 621–640 (1981)CrossRef MathSciNet MATH
    17.Capogna, L., Kenig, C.E., Lanzani, L.: Harmonic measure. Geometric and analytic points of view, American Mathematical Society. In: University Lecture Series, vol. 35 (2005)
    18.Capuzzo, D., Vitolo, A.: A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations. J. Differ. Eqn. 243(2), 578–592 (2007)CrossRef MATH
    19.Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bullet. Am. Math. Soc. 27(1), 1–67 (1992)CrossRef MathSciNet MATH
    20.David, G.: Approximation of a Reifenberg-flat set by a smooth surface. Bullet. Belg. Math. Soc.-Simon Stevin 21(2), 319–338 (2014)MATH
    21.Gilbarg, D.: The Phragmén-Lindelöf theorem for elliptic partial differential equations. J. Ration. Mech. Anal. 1, 411–417 (1952)MathSciNet MATH
    22.Granlund, S., Marola, N.: Phragmén-Lindelöf theorem for infinity harmonic functions, arXiv:1401.​6860 (2014). To appear in Communications Pure Applied Analysis
    23.Guanghao, H., Wang, L.: A geometric approach to the topological disk theorem of Reifenberg. Pac. J. Math. 233(2), 321–339 (2007)CrossRef MATH
    24.Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)MATH
    25.Herron, D.A., Koskela, P.: Continuity of sobolev functions and dirichletg finite harmonic measures. Potential Anal. 6(4), 347–353 (1997)CrossRef MathSciNet MATH
    26.Hirata, K.: Global estimates for non-symmetric Green type functions with applications to the p-Laplace equation. Potential Anal. 29(3), 221–239 (2008)CrossRef MathSciNet MATH
    27.Horgan, C.O.: Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics. In: Mathematical Problems in Elasticity, Series Advance Mathematics Applied Science, vol. 38, pp 47–89. World Sci. Publ, River Edge, NJ (1996)
    28.Jensen, R.: Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)CrossRef MATH
    29.Jin, Z., Lancaster, K.: Theorems of Phragmén-Lindelöf type for quasilinear elliptic equations. J. Reine Angew. Math. 514, 165–197 (1999)MathSciNet MATH
    30.Jin, Z., Lancaster, K.: Phragmén-Lindelöf theorems and the asymptotic behaviour of solutions of quasilinear elliptic equations in slabs. Proc. Royal Soc. Edinb. Sec. Math. 130(2), 335–373 (2000)CrossRef MathSciNet MATH
    31.Jin, Z., Lancaster, K.: A Phragmén-Lindelöf theorem and the behavior at infinity of solutions of non-hyperbolic equations. Pac. J. Math. 211(1), 101–121 (2003)CrossRef MathSciNet MATH
    32.Juutinen, P., Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33(3), 699–717 (2001)CrossRef MathSciNet MATH
    33.Kenig, C.E., Toro, T.: Harmonic measure on locally flat domains. Duke Math. J. 87(3), 509–552 (1997)CrossRef MathSciNet MATH
    34.Kilpeläinen, T., Zhong, X.: Removable sets for continuous solutions of quasilinear elliptic equations. Proc. Am. Math. Soc. 130(6), 1681–1688 (2001)CrossRef
    35.Kilpeläinen, T., Zhong, X.: Growth of entire \(\mathcal {A}\) -subharmonic functions. Ann. Acad. Sci. Fenn. Math. 28, 181–192 (2003)MathSciNet MATH
    36.Kilpeläinen, T., Shahgholian, H., Zhong, X.: Growth estimates through scaling for quasilinear partial differential equations. Ann. Acad. Sci. Fenn. Math. 32, 595–599 (2007)MathSciNet MATH
    37.Koskela, P., Manfredi, J.J., Villamor, E.: Regularity theory and traces of \(\mathcal {A}\) -harmonic functions. Trans. Am. Math. Soc. 348(2), 755–766 (1996)CrossRef MathSciNet MATH
    38.Kurta, V.V.: Phragmén-Lindelöf theorems for second-order quasilinear elliptic equations. (Russian) Ukrain. Mat. Zh. 44(10) (1992). 1376–1381; translation in Ukrainian Math. J. 44, no 10 (1992), 12621268 (1993)
    39.Lewis, J.L., Nyström, K.: Boundary behaviour for p-harmonic functions in Lipschitz and starlike Lipschitz ring domains. Ann. Sci. École Norm. Sup. 40(5), 765–813 (2007)MATH
    40.Lewis, J.L. , Nyström, K.: The boundary Harnack inequality for infinity harmonic functions in the plane. Proc. Am. Math. Soc. 136(4), 1311–1323 (2008)CrossRef MATH
    41.Lewis, J.L., Nyström, K.: Regularity and free boundary regularity for the p-Laplace operator in Reifenberg flat and Ahlfors regular domains. J. Amer. Math. Soc. 25, 827–862 (2012)CrossRef MathSciNet MATH
    42.Lindqvist, P.: On the growth of the solutions of the differential equation ∇⋅(|∇u| p−2∇u)=0 in n-dimensional space. J. Differ. Eqn. 58, 307–317 (1985)CrossRef MathSciNet MATH
    43.Lindqvist, P., Manfredi, J.J.: The Harnack inequality for infinity-harmonic functions. Electron. J. Differ. Eqn. 1995(4), 1–5 (1995)
    44.Lundström, N.L.P: Estimates for p-harmonic functions vanishing on a flat. Nonlinear Anal. Theory, Methods Appl. 74(18), 6852–6860 (2011)CrossRef MATH
    45.Lundström, N.L.P: p-harmonic functions near the boundary. Doctoral Thesis, ISSN 1102-8300, ISBN 978-91-7459-287-0, Umeå (2011)
    46.Lundström, N.L.P., Nyström, K.: The boundary Harnack inequality for solutions to equations of Aronsson type in the plane. Ann. Acad. Sci. Fenn. Math. 36, 261–278 (2011)CrossRef MathSciNet MATH
    47.Lundström, N.L.P., Vasilis, J.: Decay of a p-harmonic measure in the plane. Ann. Acad. Sci. Fenn. Math. 38(1), 351–366 (2013)CrossRef MathSciNet MATH
    48.Nevanlinna, R.: Eindeutige analytische funktionen, 2. Berlin (1936)
    49.Peres, Y., Sheffield, S.: Tug-of-war with noise: A game-theoretic view of the p- Laplacian. Duke Math. J. 145(1), 91–120 (2008)CrossRef MathSciNet MATH
    50.Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22(1), 167–210 (2009)CrossRef MathSciNet MATH
    51.Phragmén, E., Lindelöf, E.: Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des functions monogénes dans le voisinage d’un point singulier. Acta Math. 31(1), 381–406 (1908)CrossRef MathSciNet MATH
    52.Quintanilla, R.: Some theorems of Phragmén-Lindelöf type for nonlinear partial differential equations. Publ. Mat. 37, 443–463 (1993)CrossRef MathSciNet
    53.Serrin, J.: On the Phragmén-Lindelöf principle for elliptic differential equations. J. Ration. Mech. Anal. 3, 395–413 (1954)MathSciNet MATH
    54.Vitolo, A.: On the Phragmén-Lindelöf principle for second-order elliptic equations. J. Math. Anal. Appl. 300(1), 244–259 (2004)CrossRef MathSciNet MATH
  • 作者单位:Niklas L. P. Lundström (1)

    1. Department of Mathematics and Mathematical Statistics, Umeå University, SE-90187, Umeå, Sweden
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Potential Theory
    Probability Theory and Stochastic Processes
    Geometry
    Functional Analysis
  • 出版者:Springer Netherlands
  • ISSN:1572-929X
文摘
We prove estimates of a p-harmonic measure, p∈(n−m,∞], for sets in R n which are close to an m-dimensional hyperplane Λ⊂R n , m∈[0,n−1]. Using these estimates, we derive results of Phragmén-Lindelöf type in unbounded domains Ω⊂R n ∖Λ for p-subharmonic functions. Moreover, we give local and global growth estimates for p-harmonic functions, vanishing on sets in R n , which are close to an m-dimensional hyperplane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700