A rapidly new-typed detection of norovirus based on F0F1-ATPase molecular motor biosensor
详细信息    查看全文
  • 作者:Zhuo Zhao ; Jie Zhang ; Mei-Ling Xu ; Zhi-Peng Liu
  • 关键词:norovirus ; molecular motor biosensor ; detection ; F0F1 ; ATPase
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:128-133
  • 全文大小:301 KB
  • 参考文献:1.Robinson, C. M. and J. K. Pfeiffer (2014) Virology. Leaping the norovirus hurdle. Sci. 346: 700–701.
    2.Cho, H. G., S. G. Lee, J. E. Kim, K. S. Yu, D. Y. Lee, P. H. Park, M. H. Yoon, E. H. Jho, J. Kim, and S. Y. Paik (2014) Molecular epidemiology of norovirus GII.4 variants in children under 5 years with sporadic acute gastroenteritis in South Korea during 2006–2013. J. Clin. Virol. 61: 340–344.CrossRef
    3.Iturriza-Gomara, M. and B. Lopman (2014) Norovirus in healthcare settings. Curr. Opin. Infect. Dis. 27: 437–443.CrossRef
    4.Ahmed, S. M., A. J. Hall, A. E. Robinson, L. Verhoef, P. Premkumar, U. D. Parashar, M. Koopmans, and B. A. Lopman (2014) Global prevalence of norovirus in cases of gastroenteritis: A systematic review and meta-analysis. Lancet Infect. Dis. 14: 725–730.CrossRef
    5.Maunula, L., A. Kaupke, P. Vasickova, K. Soderberg, I. Kozyra, S. Lazic, W. H. van der Poel, M. Bouwknegt, S. Rutjes, K. A. Willems, R. Moloney, M. D’Agostino, H. A. de Roda, C. H. von Bonsdorff, A. Rzezutka, I. Pavlik, T. Petrovic, and N. Cook (2013) Tracing enteric viruses in the European berry fruit supply chain. Int. J. Food Microbiol. 167: 177–185.CrossRef
    6.Wang, Q., M. Erickson, Y. R. Ortega, and J. L. Cannon (2013) The fate of murine norovirus and hepatitis A virus during preparation of fresh produce by cutting and grating. Food Environ. Virol. 5: 52–60.CrossRef
    7.Sarvikivi, E., M. Roivainen, L. Maunula, T. Niskanen, T. Korhonen, M. Lappalainen, and M. Kuusi (2012) Multiple norovirus outbreaks linked to imported frozen raspberries. Epidemiol. Infect. 140: 260–267.CrossRef
    8.Ronnqvist, M., E. Aho, A. Mikkela, J. Ranta, P. Tuominen, M. Ratto, and L. Maunula (2014) Norovirus transmission between hands, gloves, utensils, and fresh produce during simulated food handling. Appl. Environ. Microbiol. 80: 5403–5410.CrossRef
    9.Lozano, L. F., S. Hammami, A. E. Castro, and B. Osburn (1992) Comparison of electron microscopy and polyacrylamide gel electrophoresis in the diagnosis of avian reovirus and rotavirus infections. Avian Dis. 36: 183–188.CrossRef
    10.Sugihara, K., H. Reupke, A. Schmidt-Westhausen, H. D. Pohle, H. R. Gelderblom, and P. A. Reichart (1990) Negative staining EM for the detection of Epstein-Barr virus in oral hairy leukoplakia. J. Oral Pathol. Med. 19: 367–370.CrossRef
    11.Saif, L. J., E. H. Bohl, E. M. Kohler, and J. H. Hughes (1977) Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (reovirus-like agent) of swine. Am. J. Vet. Res. 38: 13–20.
    12.Dea, S. and S. Garzon (1991) Identification of coronaviruses by the use of indirect protein A-gold immunoelectron microscopy. J. Vet. Diagn. Invest. 3: 297–305.CrossRef
    13.Casanova, Y. S., T. R. Boeira, E. Sisti, A. Celmer, A. S. Fonseca, N. Ikuta, D. Simon, and V. R. Lunge (2014) A complete molecular biology assay for hepatitis C virus detection, quantification and genotyping. Rev. Soc. Bras. Med. Trop. 47: 287–294.CrossRef
    14.Balasuriya, U. B. (2014) Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR. Meth. Mol. Biol. 1161: 393–402.CrossRef
    15.Boonham, N., J. Kreuze, S. Winter, R. van der Vlugt, J. Bergervoet, J. Tomlinson, and R. Mumford (2014) Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 186: 20–31.CrossRef
    16.Jia, N., Z. Q. Yan, G. Liu, D. X. Shen, J. J. Suo, Y. B. Xing, Y. Gao, and Y. X. Liu (2010) Colloidal gold and dot-ELISA rapid tests for screening influenza A virus. Nan Fang Yi Ke Da Xue Xue Bao. 30: 2267–2269.
    17.Zhaohui, S., Z. Wenling, Z. Bao, S. Rong, and M. Wenli (2004) Microarrays for the detection of HBV and HDV. J. Biochem. Mol. Biol. 37: 546–551.CrossRef
    18.Yao, C. Y. and W. L. Fu (2014) Biosensors for hepatitis B virus detection. World J. Gastroenterol. 20: 12485–12492.CrossRef
    19.Pang, Y., J. Wang, R. Xiao, and S. Wang (2014) SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens. Bioelectron. 61: 460–465.CrossRef
    20.Van Thu, V., P. T. Dung, L. T. Tam, and P. D. Tam (2014) Biosensor based on nanocomposite material for pathogenic virus detection. Colloids Surf. B Biointerfaces. 115: 176–181.CrossRef
    21.Tao, N., J. Cheng, L. Wei, and J. Yue (2009) Self-assembly of F0F1-ATPase motors and ghost. Langmuir. 25: 5747–5752.CrossRef
    22.Azarashvili, T., I. Odinokova, A. Bakunts, V. Ternovsky, O. Krestinina, J. Tyynela, and N. E. Saris (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium. 55: 69–77.
    23.Cheng, J., X. A. Zhang, Y. G. Shu, and J. C. Yue (2010) F0F1-ATPase activity regulated by external links on beta subunits. Biochem. Biophys. Res. Commun. 391: 182–186.CrossRef
    24.Zhang, J., Z. Li, H. Zhang, J. Wang, Y. Liu, and G. Chen (2013) Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor. J. Microbiol. Methods. 93: 37–41.CrossRef
    25.Li, Z., X. Liu, and Z. Zhang (2008) Preparation of F0F1 -ATPase nanoarray by dip-pen nanolithography and its application as biosensors. IEEE Trans Nanobiosci. 7: 194–199.CrossRef
    26.Dreyfus, G., A. W. Williams, I. Kawagishi, and R. M. Macnab (1993) Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol. 175: 3131–3138.
    27.Liu, X., Y. Zhang, J. Yue, P. Jiang, and Z. Zhang (2006) F0F1-ATPase as biosensor to detect single virus. Biochem. Biophys. Res. Commun. 342: 1319–1322.CrossRef
    28.Su, T., Y. Cui, X. Zhang, X. Liu, J. Yue, N. Liu, and P. Jiang (2006) Constructing a novel Nanodevice powered by delta-free FoF1-ATPase. Biochem. Biophys. Res. Commun. 350: 1013–1018.CrossRef
    29.Hanly, W. C., J. E. Artwohl, and B. T. Bennett (1995) Review of polyclonal antibody production procedures in mammals and poultry. ILAR J. 37: 93–118.CrossRef
    30.Zhang, J., M. Xu, X. Wang, Y. Wang, X. Wang, Y. Liu, D. Gu, G. Chen, P. Wang, and J. Yue (2013) Detection of food-borne rotavirus by molecular motor biosensor. Sheng Wu Gong Cheng Xue Bao. 29: 681–690.
    31.Kim, G., J. H. Moon, C. Y. Moh, and J. G. Lim (2014) A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 16: 243–247.
    32.Singh, M., N. Nesakumar, S. Sethuraman, U. M. Krishnan, and J. B. Rayappan (2014) Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J. Colloid Interface Sci. 425: 52–58.CrossRef
    33.Holzinger, M., A. Le Goff, and S. Cosnier (2014) Nanomaterials for biosensing applications: A review. Front Chem. 2: 63.CrossRef
    34.Bagheryan, Z., J. B. Raoof, R. Ojani, and P. Rezaei (2014) Development of a new biosensor based on functionalized SBA-15 modified screen-printed graphite electrode as a nano-reactor for Gquadruplex recognition. Talanta. 119: 24–33.CrossRef
    35.Daggumati, P., O. Kurtulus, C. A. Chapman, D. Dimlioglu, and E. Seker (2013) Microfabrication of nanoporous gold patterns for cell-material interaction studies. J. Vis. Exp.: e50678.
  • 作者单位:Zhuo Zhao (1)
    Jie Zhang (2)
    Mei-Ling Xu (3)
    Zhi-Peng Liu (1)
    Hua Wang (1)
    Ming Liu (1)
    Yan-Yan Yu (1)
    Li Sun (1)
    Hui Zhang (1)
    Hai-Yan Wu (4)

    1. Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308, China
    2. Beijing Entry-Exit Inspection Quarantine Bureau, Beijing, 100-026, China
    3. Linyi Entry-Exit Inspection Quarantine Bureau, Linyi, 276-034, China
    4. Weifang people’s hospital of high-tech industrial development zone, Weifang, 261-205, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
In order to adapt port rapid detection of food borne norovirus, presently we developed a new typed detection method based on F0F1-ATPase molecular motor biosensor. A specific probe was encompassed the conservative region of norovirus and F0F1-ATPase within chromatophore was constructed as a molecular motor biosensor through the “ε-subunit antibody-streptomycin-biotin-probe” system. Norovirus was captured based on probe-RNA specific binding. Our results demonstrated that the Limit of Quantification (LOQ) is 0.005 ng/mL for NV RNA and also demonstrated that this method possesses specificity and none cross-reaction for food borne virus. What’s more, the experiment used this method could be accomplished in 1 h. We detected 10 samples by using this method and the results were consistent with RT-PCR results. Overall, based on F0F1-ATPase molecular motors biosensor system we firstly established a new typed detection method for norovirus detection and demonstrated that this method is sensitive and specific and can be used in the rapid detection for food borne virus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700