Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia
详细信息    查看全文
  • 作者:Binq-Qi Zhu ; Yue-Ling Wang
  • 关键词:Hydrogeochemistry ; Hierarchical cluster analysis ; Principal components analysis ; Ground water recharge ; Northern Xinjiang ; Central Asia
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:188
  • 期:1
  • 全文大小:2,093 KB
  • 参考文献:Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.CrossRef
    Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Federico, C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18, 863–882.CrossRef
    Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9, 5–23.CrossRef
    Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.CrossRef
    Cartwright, I., & Weaver, T. R. (2005). Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resources vulnerability. Hydrogeology Journal, 13, 752–770.CrossRef
    Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313.CrossRef
    Cramer, V., & Hobbs, R. J. (2002). Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecology, 27, 546–564.CrossRef
    Davis, J. C. (1986). Statistics and data analysis in geology. New York: John Wiley & Sons Inc.
    Day, J. A. (1993). The major ion chemistry of some southern African saline systems. Hydrobiologia, 267, 37–59.CrossRef
    Domros, M., & Peng, G. (1988). The climate of China. Berlin: Springer.CrossRef
    Dragon, K. (2006). Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology, 331, 272–279.CrossRef
    Dragon, K., & Gorski, J. (2009). Identification of hydrogeochemical zones in postglacial buried valley aquifer (Wielkopolska Buried Valley aquifer, Poland). Environmental Earth Sciences, 58, 859–866.
    Dragon, K., & Gorski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environmental Earth Sciences, 73, 2153–2167.CrossRef
    Fontes, J. C. h., Louvat, D., Michelot, J. L., & Soreau, S. (1988). Isotopic content of aqueous sulphate, indicators of the origin of mineralization in crystalline rock groundwaters. In Proceedings IAH symposium on the hydrogeology and safety of radioactive and industrial hazardous waste disposal (pp. 325–341). Doc. BRGM 160, OrleAans.
    Garg, R. K., Rao, R. J., Uchchariya, D., Shukla, G., & Saksena, D. N. (2010). Seasonal variations in water quality and major threats to Ramsagar reservoir, India. African Journal of Environmental Science and Technology, 4(2), 61–76.
    George, R. J., McFarlane, D. J., & Nulsen, R. A. (1997). Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeology Journal, 5, 6–21.CrossRef
    Guler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells–Owens valley area, southeastern California, USA. Journal of Hydrology, 285, 177–198.CrossRef
    Guler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.CrossRef
    Hagg, W., Braun, L. N., Kuhn, M., & Nesgaard, T. L. (2007). Modeling of hydrological response to climate change in glacierized Central Asian catchments. Journal of Hydrology, 332, 40–53.CrossRef
    Han, D., Liang, X., Jin, M., Currell, J. M., Han, Y., & Song, X. (2009). Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environmental Management, 44, 243–255.CrossRef
    Helstrup, T., Jorgensen, N. O., & Banoeng-Yakubo, B. (2007). Investigation of hydrochemical characteristics of groundwater from Cretaceous–Eocene limestone aquifers in southern Ghana and Togo using hierarchical cluster analysis. Hydrogeology Journal, 15, 977–989.CrossRef
    Huang, G., Sun, J., Zhang, Y., Chen, Z., & Liu, F. (2013). Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Science of the Total Environment, 463–464, 209–221.CrossRef
    Huh, Y., Tsoi, M. Y., Zaitsev, A., & Edmond, M. (1998a). The fluvial geochemistry of the rivers of eastern Siberia: I. Tributaries of the Lena river draining the sedimentary platform of the Siberian craton. Geochimica et Cosmochimica Acta, 62, 1657–1676.CrossRef
    Huh, Y., Babich, D., Zaitsev, A., & Edmond, J. M. (1998b). The fluvial geochemistry of the rivers of eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochimica et Cosmochimica Acta, 62, 2053–2075.CrossRef
    Jahn, B. M., Wu, F., & Chen, B. (2000). Granitoids of the central Asian orogenic belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 181–193.CrossRef
    Jolly, I. D., McEwan, K. L., & Holland, K. L. (2008). A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology, 1, 43–58.CrossRef
    Kimbadi, S., Vandelannoote, A., Deelstra, H., Mbemba, M., & Ollevier, F. (1999). Chemical composition of the small rivers of the north-western part of Lake Tanganyika. Hydrobiologia, 407, 75–80.CrossRef
    Lipfert, G., Reeve, A. S., Sidle, W. C., & Marvinney, R. (2006). Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Applied Geochemistry, 21, 528–545.CrossRef
    Ma, L. (2002). Geological atlas of China. Beijing: Geological Press (in Chinese).
    Maxey, G. B. (1968). Hydrogeology of desert basins. Ground Water, 6, 10–22.CrossRef
    Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Hydrological Journal, 172, 31–59.CrossRef
    Melack, J. M. (1983). Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia, 105, 223–230.CrossRef
    Menzel, L., & Burger, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (southern Elbe, Germany). Journal of Hydrology, 267, 53–64.CrossRef
    Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.CrossRef
    Meyer, J. L., McDowell, W. H., Bott, T. L., Elwood, J., Ishizaki, C., Melack, J. M., Peckarsky, B., Peterson, B., & Rublee, P. (1988). Elemental dynamics in streams. Journal of the North American Benthological Society, 7, 410–432.CrossRef
    Monjerezi, M., Vogt, R. D., Aagaard, P., & Saka, J. D. K. (2011). Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Applied Geochemistry, 26, 1399–1413.CrossRef
    Noh, H., Huh, Y., Qin, J., & Ellis, A. (2009). Chemical weathering in the three rivers region of Eastern Tibet. Geochimica et Cosmochimica Acta, 73, 1857–1877.CrossRef
    Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrological Processes, 21, 1482–1495.CrossRef
    Pawellek, F., Frauenstein, F., & Veizer, J. (2002). Hydrochemistry and isotope geochemistry of the upper Danube River. Geochimica et Cosmochimica Acta, 66, 3839–3854.CrossRef
    Pilla, G., Sacchi, E., Zuppi, G., Braga, G., & Ciancetti, G. (2006). Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeology Journal, 14, 795–808.CrossRef
    Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25, 914–923.CrossRef
    Plummer, L. N., Busby, J. F., Lee, R. W., & Hanshaw, B. B. (1990). Geochemical modelling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resources Research, 26, 1981–2014.CrossRef
    Rosen, M., & Jones, S. (1998). Controls on the chemical composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, central Otago, New Zealand. Hydrogeology Journal, 6, 264–268.CrossRef
    Stadler, S., Osenbrück, K., Suckow, A. O., Himmelsbach, T., & Hötzl, H. (2010). Groundwater flow regime, recharge and regional-scale solute transport in the semi-arid Kalahari of Botswana derived from isotope hydrology and hydrochemistry. Journal of Hydrology, 388, 291–303.CrossRef
    Stetzenbach, K. J., Hodge, V. F., Guo, C., Farnham, I. M., & Johannesson, K. H. (2001). Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA. Journal of Hydrology, 243, 254–271.CrossRef
    Stiff, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3, 15–16.CrossRef
    Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., & Meng, J. (2010). Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38, 515–518.CrossRef
    Toran, L. E., & Saunders, J. A. (1999). Modeling alternative paths of chemical evolution of Na-HCO3-type ground water near Oak Ridge, Tennessee, USA. Hydrological Journal, 7, 355–364.
    UNEP (1992). World atlas of desertification. London: United Nations Environment Programme.
    Usunoff, E. J., & Guzman-Guzman, A. (1989). Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Ground Water, 27, 27–34.CrossRef
    Van den Brink, C., Frapporti, G., Griffioen, J., & Jan Zaadnoordijk, W. (2007). Statistical analysis of anthropogenic versus geochemical-controlled differences in groundwater composition in The Netherlands. Journal of Hydrology, 336, 470–480.CrossRef
    Wang, S. W., Liu, C. W., & Jang, C. S. (2007). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, 460–476.CrossRef
    Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (3rd ed.). Springer: New York.CrossRef
    WHO (2008). Guidelines for drinking water quality. Geneva: World Health Organization.
    XETCAS (Xinjiang Expedition Team of the Chinese Academy of Sciences), IGCAS (Institute of Geography of the Chinese Academy of Sciences), & DGBNU (Department of Geography of Beijing Normal University) (1978). Geomorphology in Xinjiang. Beijing: Science Press (in Chinese).
    Xu, C. C., Chen, Y., Hamid, Y., Tashpolat, T., Chen, Y., Ge, H., & Li, W. (2009). Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 23, 2045–2055.CrossRef
    Xu, C. C., Chen, Y., Yang, Y., Hao, X., & Shen, Y. (2010). Hydrology and water resources variation and its response to regional climate change in Xinjiang. Journal of Geographical Sciences, 20, 599–612.CrossRef
    Yidana, S. M. (2010). Groundwater classification using multivariate statistical methods: southern Ghana. Journal of African Earth Sciences, 57, 455–469.CrossRef
    Zghibi, A., Merzougui, A., Zouhri, L., & Tarhouni, J. (2014). Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 89, 1–15.CrossRef
    Zhu, B., & Yang, X. (2007). The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chinese Science Bulletin, 52, 2123–2129.CrossRef
    Zhu, B., & Yang, X. (2010). The origin and distribution of soluble salts in the sand seas of northern China. Geomorphology, 123, 232–242.CrossRef
    Zhu, G. F., Li, Z. Z., Su, Y. H., Ma, J. Z., & Zhang, Y. Y. (2007). Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333, 239–251.CrossRef
    Zhu, B., Yang, X., Rioual, P., Qin, X., Liu, Z., Xiong, H., & Yu, J. J. (2011). Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Applied Geochemistry, 26, 1535–1548.CrossRef
    Zhu, B., Yu, J., Qin, X., Rioual, P., & Xiong, H. (2012a). Climatic and geological factors contributing to the natural water chemistry in an arid environment from watersheds in northern Xinjiang, China. Geomorphology, 153–154, 102–114.CrossRef
    Zhu, B., Yang, X., Liu, Z., Rioual, P., Li, C., & Xiong, H. (2012b). Geochemical compositions of soluble salts in aeolian sands from the Taklamakan and Badanjilin deserts in northern China, and their influencing factors and environmental implications. Environmental Earth Sciences, 66, 337–353.CrossRef
    Zhu, B., Yu, J., Qin, X., Rioual, P., Liu, Z., Zhang, Y., Jiang, F., Mu, Y., Li, H., Ren, X., & Xiong, H. (2013a). The significance of mid-latitude rivers for weathering rates and chemical fluxes: evidence from northern Xinjiang rivers. Journal of Hydrology, 486, 151–174.CrossRef
    Zhu, B., Yu, J., Qin, X., Rioual, P., Zhang, Y., Liu, Z., Mu, Y., Li, H., Ren, X., & Xiong, H. (2013b). Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. Journal of Asian Earth Sciences, 66, 277–294.CrossRef
  • 作者单位:Binq-Qi Zhu (1)
    Yue-Ling Wang (1)

    1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Datun Road, No. A11, Chaoyang District, Beijing, 100101, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1–C7) and three principal components (PC1–PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700