Realization of Graphene-Based Tunable Plasmon-Induced Transparency by the Dipole-Dipole Coupling
详细信息    查看全文
  • 作者:Xiong-jun Shang ; Xiang Zhai ; Xiao-fei Li ; Ling-ling Wang ; Ben-xin Wang
  • 关键词:Plasmon ; induced transparency ; Graphene ; Tunability ; Dipole ; dipole coupling
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:419-423
  • 全文大小:1,247 KB
  • 参考文献:1.Ates C, Sevincli S, Pohl T (2011) Electromagnetically induced transparency in strongly interacting Rydberg gases. Phys Rev A 83:041802CrossRef
    2.Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Soukoulis CM (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107:043901CrossRef
    3.Rohlsberger R, Wille H, Schlage K, Sahoo B (2012) Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482:199–203CrossRef
    4.Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRef
    5.Dong ZG, Liu H, Cao JX, Li T, Wang SM, Zhu SN, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97:114101CrossRef
    6.Phillips D, Fleischhauer A, Mair A, Walsworth R, Lukin M (2001) Storage of light in atomic vapor. Phys Rev Lett 86:783–786CrossRef
    7.Khanikaev AB, Mousavi SH, Wu C, Dabidian N, Alici KB, Shvets G (2012) Electromagnetically induced polarization conversion. Opt Commun 285:3423–3427CrossRef
    8.Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark
    ight plasmon resonators. Opt Express 19:5970–5978CrossRef
    9.Schmidt H, Ram RJ (2000) All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl Phys Lett 76:3173CrossRef
    10.He JN, Wang JQ, Ding P, F CZ, Arnaut LR, Liang EJ (2015) Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces. Plasmonics. doi:10.​1007/​s11468-015-9911-8 , online
    11.Yun B, Hu G, Cong J, Cui Y (2014) Plasmon induced transparency in metal insulator metal waveguide by a stub coupled with F-P resonator. Mater Res Express 1:036201CrossRef
    12.Deng ZL, Dong JW (2013) Lasing in plasmon-induced transparency nanocavity. Opt Express 21:20291–20302CrossRef
    13.Wang L, Gu Y, Chen H, Zhang JY, Cui Y, Gerardot BD, Gong Q (2013) Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci Rep 3:2879
    14.Liu ZZ, Xiao JJ, Zhang Q, Zhang XM, Tao KY (2015) Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer. Plasmonics. doi:10.​1007/​s11468-015-9901-x , online
    15.Cao GT, Li HJ, Deng Y, Zhan SP, He ZH, Li BX (2014) Plasmon-induced transparency in a single multimode stub resonator. Opt Express 22:25215CrossRef
    16.Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902CrossRef
    17.Wang L, Cai W, Luo WW, Ma ZH, Du CL, Zhang XZ, Xu JJ (2014) Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs. Opt Express 22:32450CrossRef
    18.Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRef
    19.Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114CrossRef
    20.Cheng H, Chen SQ, Yu P, Duan XY, Xie BY, Tian JG (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103:203112CrossRef
    21.Liu H, Li B, Zheng L, Xu C, Zhang G, Wu X, Xiang N (2013) Multispectral plasmon induced transparency in triangle and nanorod(s) hybrid nanostructures. Opt Lett 38:977–979CrossRef
    22.Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, de Abajo FJG (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6:431–440CrossRef
    23.Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
    24.Thongrattanasiri S, Manjavacas A, Javier Garc F (2012) Quantum finite-size effects in graphene plasmons. ACS Nano 6:1766–1775CrossRef
    25.Koppens FHL, Chang DE, Garca J, de Abajob F (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRef
    26.Novoselov KS (2013) Electric field effect in atomically thin carbon films. Science 306:666CrossRef
    27.Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef
    28.He Z, Li HJ, Zhan SP, Cao GT, Li BX (2014) Combined theoretical analysis for plasmon induced transparency in waveguide systems. Opt Lett 39:5543–5546CrossRef
    29.Correas-Serrano D, Gomez Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2013) Graphene based plasmonic tunable low pass filters in the THz band. IEEE Trans Nanotechnol 13:1145–1153CrossRef
    30.Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168CrossRef
  • 作者单位:Xiong-jun Shang (1)
    Xiang Zhai (1)
    Xiao-fei Li (2)
    Ling-ling Wang (1)
    Ben-xin Wang (1)
    Gui-dong Liu (1)

    1. School of physics and Microelectronic and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, 410082, China
    2. School of Optoelectronic Information, University of Electronic Science and Technology, Chengdu, 610054, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
A numerical and theoretical study is presented on the realization of tunable plasmon-induced transparency (PIT) phenomenon in the three-dimensional patterned graphene nanostrips. The simulation results reveal that the PIT effect is generated due to the excitation of dark mode which can be considered a dipole. The three-level plasmonic system is employed to explain the physical mechanism of the PIT effect. Different from previous reported form (dipole-quadrupole coupling), the proposed is attributed to the dipole-dipole coupling. The PIT effect can be tuned by changing the coupling length between bright and dark mode as well as the Fermi energy of graphene. Our studies provide guidance for fabricating ultra-compact devices in practical application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700