Design of a Novel Dual-Band Terahertz Metamaterial Absorber
详细信息    查看全文
  • 作者:Ben-Xin Wang ; Gui-Zhen Wang ; Ling-Ling Wang
  • 关键词:Metamaterial ; Perfect absorption ; Dual ; band absorber ; Terahertz
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:523-530
  • 全文大小:1,861 KB
  • 参考文献:1.Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRef
    2.Pendry JB (2000) Three-dimensional invisibility cloak at optical wavelengths. Phys Rev Lett 85:3966CrossRef
    3.Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792CrossRef
    4.Yang Y, Huang R, Cong L, ZHu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W (2011) Modulating the fundamental inductive-capacitive resonance in asymmetric double-split terahertz metamaterials. Appl Phys Lett 98:121114CrossRef
    5.Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis CM, Ecnomou EN (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75:235114CrossRef
    6.Wu D, Fang N, Sun C, Zhang X, Padilla WJ, Basov DN, Smith DR, Schultz S (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201CrossRef
    7.Strikwerda AC, Zalkovskij M, Lorenzen DL, Krabbe A, Lavrinenko AV, Jepsen PU (2014) Metamaterial composite bandpass filter with an ultra
    oadband rejection bandwidth of up to 240 terahertz. Appl Phys Lett 104:191103CrossRef
    8.Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith DR, Padilla WJ (2014) Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 8:605–609CrossRef
    9.Fang X, Tseng ML, Ou JY, MacDonald KF, Tsai DP, Zheludev NI (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 104:141102CrossRef
    10.Caputo JG, Gabitov I, Maimistov AI (2015) Polarization rotation by an rf-SQUID metasurface. Phys Rev B 91:115430CrossRef
    11.Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291CrossRef
    12.Zhou J, Koschny T, Soukoulis CM (2008) An efficient way to reduce losses of left-handed metamaterials. Opt Express 16:11147–11152CrossRef
    13.Wuestner S, Pusch A, Tsakmakidis KL, Hamm JM, Hess O (2010) Overcoming losses with gain in a negative refraction index metamaterials. Phys Rev Lett 105:127401CrossRef
    14.Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402CrossRef
    15.Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16:7181–7188CrossRef
    16.Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104CrossRef
    17.Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20:7165–7172CrossRef
    18.Grant J, Ma Y, Lok LB, Khalid A, Cumming DRS (2011) Polarization insensitive terahertz metamaterial absorber. Opt Lett 36:1524–1526CrossRef
    19.Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Azad AK, Taylor AJ, Chen HT (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101:101102CrossRef
    20.Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101CrossRef
    21.Cui Y, Fuang KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447CrossRef
    22.Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407CrossRef
    23.Ye Y, Jin Y, He S (2010) Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime. J Opt Soc Am B 27:498–503CrossRef
    24.Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36:3476–3478CrossRef
    25.Ding F, Cui Y, Ge X, Zhang F, Jin Y, He S (2012) Ultra
    oadband microwave metamaterial absorber. Appl Phys Lett 100:103506CrossRef
    26.Dayal G, Ramakrishna SA (2013) Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J Opt 15:055106CrossRef
    27.Bhattacharyya S, Ghosh S, Srivastava KV (2013) Triple band polarization independent metamaterial absorber with bandwidth-enhancement at X-band. J Appl Phys 114:094514CrossRef
    28.Bhattacharyya S, Srivastava KV (2014) Triple-band polarization-independent metamaterial absorber using ELC resonator. J Appl Phys 115:064508CrossRef
    29.Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901CrossRef
    30.Kollatou TM, Dimitriadis AI, Assimonis SD, Kantartzis NV, Antonopoulos CS (2014) Multi-band, highly absorbing, microwave metamaterial structures. Appl Phys A 115:555–561CrossRef
    31.Li H, Yuan LH, Zhou B, Shen XP, Cheng Q, Cui TJ (2011) Ultrathin multi-band gigahertz metamaterial absorbers. J App Phys 110:014909CrossRef
    32.Park JW, Tuong PV, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee YP (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21:9691–9702CrossRef
    33.Viet DT, Hien NH, Tuong PV, Minh NQ, Trang PT, Le LN, Lee YP, Lam VD (2014) Perfect absorber metamaterials: peak, multi-band and broadband absorption. Opt Commun 322:209–213CrossRef
    34.Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656–662CrossRef
    35.Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Metamaterial-based low-conductivity alloy perfect absorber. J Lightwave Technol 32:2293–2298CrossRef
    36.Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett 26:111–114CrossRef
    37.Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D 43:225102CrossRef
    38.Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36:945–947CrossRef
    39.Wen Q-Y, Zhang H-W, Xie Y-S, Yang Q-H, Liu Y-L (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett 95:241111CrossRef
    40.Yuan Y, Bingham C, Tyler T, Palit S, Hand TH, Padilla WJ, Smith DR, Jokerst NM, Cummer SA (2008) Dual-band planar electric metamaterial in the terahertz regime. Opt Express 16:9746–9752CrossRef
    41.Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui TJ (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154101CrossRef
    42.Ye Q, Liu YL, Lin H, Li M, Yang H (2012) Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl Phys A 107:155–160CrossRef
    43.Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J App Phys 117:014504CrossRef
    44.Wang BX, Wang GZ, Zhai X, Wang LL (2015) Polarization tunable terahertz metamaterial absorber. IEEE Photon J 7:4600507
    45.Liu N, Fu L, Kaiser S, Schweizer H, Giessen H (2008) Plasmonic building for magnetic molecules in three-dimensional optical metamaterials. Adv Mater 20:3859–3865CrossRef
    46.Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19:3628–3632CrossRef
    47.Jeppesen C, Mortensen NA, Kristensen A (2009) Capacitance tuning of nanoscale split-ring resonators. Appl Phys Lett 95:193108CrossRef
    48.Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353CrossRef
    49.Aydin K, Bulu I, Guven K, Kafesaki M, Soukoulis CM, Ozbay E (2005) Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J Phys 7:168CrossRef
    50.Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401CrossRef
  • 作者单位:Ben-Xin Wang (1)
    Gui-Zhen Wang (2)
    Ling-Ling Wang (3)

    1. School of Science, Jiangnan University, Wuxi, 214122, China
    2. Modern Educational Technology Center, Hunan Traditional Chinese Medical College, Zhuzhou, 412012, China
    3. School of Physics and Electronics, Hunan University, Changsha, 410082, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We present a novel dual-band terahertz absorber formed by only a patterned U-shaped metallic ring and a metallic ground plane separated by a dielectric layer. Theoretical results show that the proposed absorber has two distinct absorption bands whose peaks are average over 98 %. Different from previous reports by combining the resonances of the complex structure (coplanar super-unit structure or stacked structure) to obtain the dual-band response, the proposed structure utilizes the LC resonance and dipolar response of the single patterned structure and thus making the proposed structure quite easy to be fabricated. The roles of the geometric parameters are investigated to explain the principle of absorption. Furthermore, the proposed concept applies to other types of absorber structure and can be readily extended to other frequency regimes for a host of applications such as detection, imaging, sensing, and selective thermal emitters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700