Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering
详细信息    查看全文
  • 作者:Lei Feng ; Renping Ma ; Yandong Wang ; Daren Xu ; Dongyang Xiao ; Lingxiao Liu…
  • 关键词:surface ; enhanced Raman scattering (SERS) ; surface plasmon resonance ; bowtie nanoantenna ; nanosphere lithography ; gap cavity
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:8
  • 期:11
  • 页码:3715-3724
  • 全文大小:2,393 KB
  • 参考文献:[1]Natan, M. J. Concluding remarks: Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321–328.CrossRef
    [2]Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G. SERS as a foundation for nanoscale, optically detected biological labels. Adv. Mater. 2007, 19, 3100–3108.CrossRef
    [3]Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.CrossRef
    [4]Morton, S. M.; Silverstein, D. W.; Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 2011, 111, 3962–3994.CrossRef
    [5]Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.CrossRef
    [6]Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.CrossRef
    [7]Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.CrossRef
    [8]Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T. Ordered Ag/Si nanowires array: Wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett. 2013, 13, 5039–5045.CrossRef
    [9]Stockman, M. I. Electromagnetic theory of SERS. In Surfaceenhanced Raman Scattering: Physics and Applications; Kneipp, K.; Moskovits, M.; Kneipp, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 2006; pp 47–65.
    [10]Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.CrossRef
    [11]Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.CrossRef
    [12]Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.CrossRef
    [13]Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRef
    [14]Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90.CrossRef
    [15]Liang, Z. Q.; Sun, J.; Jiang, Y. Y.; Jiang, L.; Chen, X. D. Plasmonic enhanced optoelectronic devices. Plasmonics 2014, 9, 859–866.CrossRef
    [16]Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mü llen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.CrossRef
    [17]Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952–4955.CrossRef
    [18]Dai, Z. G.; Xiao, X. H.; Liao, L.; Zheng, J. F.; Mei, F.; Wu, W.; Ying, J. J.; Ren, F.; Jiang, C. Z. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Appl. Phys. Lett. 2013, 103, 041903.CrossRef
    [19]Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S. Z.; Xiong, Q. H. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 2013, 4, 496–501.CrossRef
    [20]Hanke, T.; Krauss, G.; Träutlein, D.; Wild, B.; Bratschitsch, R.; Leitenstorfer, A. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle nearinfrared pulses. Phys. Rev. Lett. 2009, 103, 257404.CrossRef
    [21]Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 2011, 11, 61–65.CrossRef
    [22]Suh, J. Y.; Huntington, M. D.; Kim, C. H.; Zhou, W.; Wasielewski, M. R.; Odom, T. W. Extraordinary nonlinear absorption in 3D bowtie nanoantennas. Nano Lett. 2012, 12, 269–274.CrossRef
    [23]Roxworthy, B. J.; Ko, K. D.; Kumar, A.; Fung, K. H.; Chow, E. K.; Liu, G. L.; Fang, N. X.; Toussaint, K. C., Jr. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 2012, 12, 796–801.CrossRef
    [24]Salmistraro, M.; Schwartzberg, A.; Bao, W.; Depero, L. E.; Weber-Bargioni, A.; Cabrini, S.; Alessandri, I. Triggering and monitoring plasmon-enhanced reactions by optical nanoantennas coupled to photocatalytic beads. Small 2013, 9, 3301–3307.
    [25]Nicoli, F.; Verschueren, D.; Klein, M.; Dekker, C.; Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 2014, 14, 6917–6925.CrossRef
    [26]Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G.; Moerner, W. E. Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 2004, 4, 957–961.CrossRef
    [27]Liow, C.; Meng, F. B.; Chen, X. D.; Li, S. Z. Dependence of plasmonic properties on electron densities for various coupled Au nanostructures. J. Phys. Chem. C 2014, 118, 27531–27538.CrossRef
    [28]Novotny, L.; Bian, R. X.; Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79, 645–648.CrossRef
    [29]Gramotnev, D. K.; Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 2013, 8, 13–22.CrossRef
    [30]Halas, N. J.; Lal, S.; Link, S.; Chang, W. S.; Natelson, D.; Hafner, J. H.; Nordlander, P. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv. Mater. 2012, 24, 4842–4877, 4774.
    [31]Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005, 94, 017402.CrossRef
    [32]Liaw, J.-W. Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1441–1447.CrossRef
    [33]Sundaramurthy, A.; Schuck, P. J.; Conley, N. R.; Fromm, D. P.; Kino, G. S.; Moerner, W. E. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 2006, 6, 355–360.CrossRef
    [34]Merlein, J.; Kahl, M.; Zuschlag, A.; Sell, A.; Halm, A.; Boneberg, J.; Leiderer, P.; Leitenstorfer, A.; Bratschitsch, R. Nanomechanical control of an optical antenna. Nat. Photonics 2008, 2, 230–233.CrossRef
    [35]Li, A. R.; Li, S. Z. Large-volume hot spots in gold spiky nanoparticle dimers for high-performance surface-enhanced spectroscopy. Nanoscale 2014, 6, 12921–12928.CrossRef
    [36]Zhang, Z.; Weber-Bargioni, A.; Wu, S. W.; Dhuey, S.; Cabrini, S.; Schuck, P. J. Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett. 2009, 9, 4505–4509.CrossRef
    [37]Dmitriev, A.; Hä gglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Kä ll, M.; Sutherland, D. S. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008, 8, 3893–3898.CrossRef
    [38]Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H. et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381.
    [39]Siegfried, T.; Ekinci, Y.; Martin, O. J. F.; Sigg, H. Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators. Nano Lett. 2013, 13, 5449–5453.CrossRef
    [40]Artar, A.; Yanik, A. A.; Altug, H. Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 2009, 95, 051105.CrossRef
    [41]Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196.CrossRef
    [42]Zrimsek, A. B.; Henry, A.-I.; Van Duyne, R. P. Single molecule surface-enhanced Raman spectroscopy without nanogaps. J. Phys. Chem. Lett. 2013, 4, 3206–3210.CrossRef
    [43]Rybczynski, J.; Hilgendorff, M.; Giersig, M. Nanosphere lithography—fabrication of various periodic magnetic particle arrays using versatile nanosphere masks. In Low-dimensional Systems: Theory, Preparation, and some Applications; Liz-Marzán, L. M.; Giersig, M., Eds.; Springer: Netherlands, 2003; pp 163–172.CrossRef
    [44]Sawaguchi, T.; Mizutani, F.; Yoshimoto, S.; Taniguchi, I. Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine, 2-mercaptopyridine and thiophenol on Au(111) electrodes. Electrochim. Acta 2000, 45, 2861–2867.CrossRef
    [45]Hu, J. W.; Zhao, B.; Xu, W. Q.; Li, B. F.; Fan, Y. G. Surfaceenhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochim. Acta, Part A 2002, 58, 2827–2834.CrossRef
    [46]Liu, N.; Giessen, H. Coupling effects in optical metamaterials. Angew. Chem., Int. Ed. 2010, 49, 9838–9852.CrossRef
    [47]Taubert, R.; Ameling, R.; Weiss, T.; Christ, A.; Giessen, H. From near-field to far-field coupling in the third dimension: Retarded interaction of particle plasmons. Nano Lett. 2011, 11, 4421–4424.CrossRef
    [48]Li, G. Z.; Shen, Y.; Xiao, G. H.; Jin, C. J. Double-layered metal grating for high-performance refractive index sensing. Opt. Express 2015, 23, 8995–9003.CrossRef
    [49]Liu, T. R.; Shen, Y.; Shin, W.; Zhu, Q. Z.; Fan, S. H.; Jin, C. J. Dislocated double-layer metal gratings: An efficient unidirectional coupler. Nano Lett. 2014, 14, 3848–3854.CrossRef
    [50]Lyvers, D. P.; Moon, J. M.; Kildishev, A. V.; Shalaev, V. M.; Wei, A. Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2008, 2, 2569–2576.CrossRef
    [51]Doherty, M. D.; Murphy, A.; Pollard, R. J.; Dawson, P. Surface-enhanced Raman scattering from metallic nanostructures: Bridging the gap between the near-field and farfield responses. Phys. Rev. X 2013, 3, 011001.
    [52]Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.CrossRef
    [53]Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.CrossRef
    [54]Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972–1975.CrossRef
    [55]Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, 1985.
  • 作者单位:Lei Feng (1)
    Renping Ma (1)
    Yandong Wang (1)
    Daren Xu (1)
    Dongyang Xiao (1)
    Lingxiao Liu (1)
    Nan Lu (1)

    1. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Improving hot-spot intensity is a key issue in surface-enhanced Raman scattering (SERS). The bowtie nanoantenna (BNA) is an effective device used to concentrate light energy into a nanoscale volume and produce strong hot spots. Nanosphere lithography (NSL) is a large-area and low-cost technique to produce BNA arrays; however, the SERS activity of NSL-fabricated BNAs is limited. In this paper, we present a simple method to improve the SERS activity of conventional NSL-fabricated BNAs by modifying their geometry. The new configuration is termed “silver-coated elevated bowtie nanoantenna” (SCEBNA). SCEBNAs perform intensive near-field enhancement in the gap cavities owing to the integrated contribution of the “lightning rod” effect, resonance coupling, and the formation of the plasmonic Fabry–Pérot cavity. Experimental measurements and finite-difference time-domain simulations revealed that the hot-spot intensity and the substrate enhancement factor can be optimized by adjusting the silver thickness. The optimal sample has the capability of trace-amount detection with fine reproducibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700