Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat
详细信息    查看全文
  • 作者:Qin Lu (21) (22)
    Lu Gao (21) (22)
    Lijie Huang (21) (22)
    Linhui Ruan (21) (22)
    Jianjing Yang (21) (22)
    Weilong Huang (21) (22)
    Zhenxing Li (21) (22)
    Yongliang Zhang (21)
    Kunlin Jin (23)
    Qichuan Zhuge (21) (22)
  • 关键词:ICH ; mTOR ; Rapamycin ; Outcome ; Immune response
  • 刊名:Journal of Neuroinflammation
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:1,188 KB
  • 参考文献:1. Ingall T: Stroke–incidence, mortality, morbidity and risk. / J Insur Med 2004, 36:143-52.
    2. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF: Spontaneous intracerebral hemorrhage. / N Engl J Med 2001, 344:1450-460. CrossRef
    3. Inagawa T: What are the actual incidence and mortality rates of intracerebral hemorrhage? / Neurosurg Rev 2002, 25:237-46. CrossRef
    4. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN: Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. / Cell 1993, 73:585-96. CrossRef
    5. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. / Nature 1994, 369:756-58. CrossRef
    6. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH: RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. / Cell 1994, 78:35-3. CrossRef
    7. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS: mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. / Cell Stem Cell 2009, 5:279-89. CrossRef
    8. Harris TE, Lawrence JC Jr: TOR signaling. / Sci STKE 2003, 212:re15.
    9. Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. / Cell 2003, 115:577-90. CrossRef
    10. Zeng LH, Rensing NR, Wong M: The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. / J Neurosci 2009, 29:6964-972. CrossRef
    11. Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W: Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. / Neurobiol Dis 2008, 32:16-5. CrossRef
    12. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA: Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. / J Neurosci 2010, 30:1166-175. CrossRef
    13. An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ: Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. / Am J Pathol 2003, 163:591-07. CrossRef
    14. Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR: Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. / J Cereb Blood Flow Metab 2007, 27:939-49.
    15. Xi G, Keep RF, Hoff JT: Mechanisms of brain injury after intracerebral haemorrhage. / Lancet Neurol 2006, 5:53-3. CrossRef
    16. Wang J, Tsirka SE: Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. / Neurocrit Care 2005, 3:77-5. CrossRef
    17. Wang Q, Tang XN, Yenari MA: The inflammatory response in stroke. / J Neuroimmunol 2007, 184:53-8. CrossRef
    18. Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA: Inflammation following stroke. / J Clin Neurosci 2006, 13:1-. CrossRef
    19. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R: Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. / Nat Med 2009, 15:192-99. CrossRef
    20. Suri-Payer E, Fritzsching B: Regulatory T cells in experimental autoimmune disease. / Springer Semin Immunopathol 2006, 28:3-6. CrossRef
    21. O’Garra A, Vieira P: Regulatory T cells and mechanisms of immune system control. / Nat Med 2004, 10:801-05. CrossRef
    22. Battaglia M, Stabilini A, Roncarolo MG: Rapamycin selectively expands CD4-?CD25-?FoxP3+ regulatory T cells. / Blood 2005, 105:4743-748. CrossRef
    23. Kopf H, de la Rosa GM, Howard OM, Chen X: Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. / Int Immunopharmacol 2007, 7:1819-824. CrossRef
    24. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats. / Stroke 1990, 21:801-07. CrossRef
    25. Deinsberger W, Vogel J, Kuschinsky W, Auer LM, Boker DK: Experimental intracerebral hemorrhage: description of a double injection model in rats. / Neurol Res 1996, 18:475-77.
    26. Schallert T, Kozlowski DA, Humm JL, Cocke RR: Use-dependent structural events in recovery of function. / Adv Neurol 1997, 73:229-38.
    27. Shohami E, Novikov M, Bass R: Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. / Brain Res 1995, 674:55-2. CrossRef
    28. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. / Stroke 2009, 40:1849-857. CrossRef
    29. Ma XM, Blenis J: Molecular mechanisms of mTOR-mediated translational control. / Nat Rev Mol Cell Biol 2009, 10:307-18. CrossRef
    30. Radimerski T, Montagne J, Rintelen F, Stocker H, van der Kaay J, Downes CP, Hafen E, Thomas G: dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. / Nat Cell Biol 2002, 4:251-55. CrossRef
    31. Meyuhas O: Synthesis of the translational apparatus is regulated at the translational level. / Eur J Biochem 2000, 267:6321-330. CrossRef
    32. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R: Rapamycin is a neuroprotective treatment for traumatic brain injury. / Neurobiol Dis 2007, 26:86-3. CrossRef
    33. Carloni S, Buonocore G, Balduini W: Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. / Neurobiol Dis 2008, 32:329-39. CrossRef
    34. Zhang W, Khatibi NH, Yamaguchi-Okada M, Yan J, Chen C, Hu Q, Meng H, Han H, Liu S, Zhou C: Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines. / Exp Neurol 2012, 233:799-06. CrossRef
    35. Powell JD, Pollizzi KN, Heikamp EB, Horton MR: Regulation of immune responses by mTOR. / Annu Rev Immunol 2012, 30:39-8. CrossRef
    36. Wang J, Dore S: Inflammation after intracerebral hemorrhage. / J Cereb Blood Flow Metab 2007, 27:894-08. CrossRef
    37. Dello Russo C, Lisi L, Tringali G, Navarra P: Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. / Biochem Pharmacol 2009, 78:1242-251. CrossRef
    38. Popko B, Corbin JG, Baerwald KD, Dupree J, Garcia AM: The effects of interferon-gamma on the central nervous system. / Mol Neurobiol 1997, 14:19-5. CrossRef
    39. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F: Activation of microglial cells by beta-amyloid protein and interferon-gamma. / Nature 1995, 374:647-50. CrossRef
    40. Hartlage-Rubsamen M, Lemke R, Schliebs R: Interleukin-1beta, inducible nitric oxide synthase, and nuclear factor-kappaB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-gamma injection. / J Neurosci Res 1999, 57:388-98. CrossRef
    41. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW: Interleukin-10 in the brain. / Crit Rev Immunol 2001, 21:427-49. CrossRef
    42. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI: IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. / Brain Res 2011, 1373:189-94. CrossRef
    43. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S: Macrophages prevent hemorrhagic infarct transformation in murine stroke models. / Ann Neurol 2012, 71:743-52. CrossRef
    44. Krupinski J, Kumar P, Kumar S, Kaluza J: Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. / Stroke 1996, 27:852-57. CrossRef
    45. Leker RR, Toth ZE, Shahar T, Cassiani-Ingoni R, Szalayova I, Key S, Bratincsak A, Mezey E: Transforming growth factor alpha induces angiogenesis and neurogenesis following stroke. / Neuroscience 2009, 163:233-43. CrossRef
    46. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J: A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. / Stroke 1997, 28:564-73. CrossRef
    47. Gaengel K, Genove G, Armulik A, Betsholtz C: Endothelial-mural cell signaling in vascular development and angiogenesis. / Arterioscler Thromb Vasc Biol 2009, 29:630-38. CrossRef
    48. Zhou L, Chong MM, Littman DR: Plasticity of CD4+ T cell lineage differentiation. / Immunity 2009, 30:646-55. CrossRef
    49. Josefowicz SZ, Rudensky A: Control of regulatory T cell lineage commitment and maintenance. / Immunity 2009, 30:616-25. CrossRef
  • 作者单位:Qin Lu (21) (22)
    Lu Gao (21) (22)
    Lijie Huang (21) (22)
    Linhui Ruan (21) (22)
    Jianjing Yang (21) (22)
    Weilong Huang (21) (22)
    Zhenxing Li (21) (22)
    Yongliang Zhang (21)
    Kunlin Jin (23)
    Qichuan Zhuge (21) (22)

    21. Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
    22. Zhejiang Provincial Key Laboratory of Aging and Neurological Disease, Wenzhou Medical University, Wenzhou, Zhejiang, China
    23. Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
  • ISSN:1742-2094
文摘
Background Mammalian target of rapamycin (mTOR), a serine/threonine kinase, regulates many processes, including cell growth and the immune response. mTOR is also dysregulated in several neurological diseases, such as traumatic brain injury (TBI), stroke, and neurodegenerative disease. However, the role of mTOR in intracerebral hemorrhage (ICH) remains unexplored. The aims of our study were to determine whether inhibiting mTOR signaling could affect the outcome after ICH and to investigate the possible underlying mechanism. Methods A rat ICH model was induced by intracerebral injection of collagenase IV into the striatum, and mTOR activation was inhibited by administration of rapamycin. mTOR signaling activation was determined by western blotting. Neurobehavioral deficit after ICH was determined by a set of modified Neurological Severity Scores (mNSS). The levels of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and cytokines were examined using flow cytometry and ELISA, respectively. Results Our results demonstrated thatmTOR signaling was activated 30 minutes and returned to its basal level 1 day after ICH. Increased p-mTOR, which mean that mTOR signaling was activated, was predominantly located around the hematoma. Rapamycin treatment significantly improved the neurobehavioral deficit after ICH, increased the number of Tregs, increased levels of interleukin-10 and transforming growth factor-β and reduced interferon-γ both in peripheral blood and brain. Conclusions Our study suggests that mTOR improves ICH outcome and modulates immune response after ICH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700