The effect of interfacial diffusion on device performance of polymer solar cells: a quantitative view by active-layer doping
详细信息    查看全文
  • 作者:Li Nian (1)
    Jiadong Zhou (1)
    Kai Zeng (1)
    Xiaoyan Wu (1)
    Linlin Liu (1)
    Zengqi Xie (1)
    Fei Huang (1)
    Yuguang Ma (1)

    1. Institute of Polymer Optoelectronic Materials and Devices
    ; State Key Laboratory of Luminescent Materials and Devices ; South China University of Technology ; Guangzhou ; 510640 ; China
  • 关键词:bulk ; heterojunction solar cells ; interfacial diffusion ; PFN ; stability ; degradation
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:58
  • 期:2
  • 页码:317-322
  • 全文大小:915 KB
  • 参考文献:1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. / Acc Chem Res, 2009, 42: 1709鈥?718 CrossRef
    2. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. / Chem Rev, 2009, 109: 5868鈥?923 CrossRef
    3. Li G, Zhu R, Yang Y. Polymer solar cells. / Nat Photonics, 2012, 6: 153鈥?61 CrossRef
    4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. / Acc Chem Res, 2012, 45: 723鈥?33 CrossRef
    5. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. / Nat Photonics, 2012, 6: 591鈥?95
    6. Gu C, Chen Y, Zhang Z, Xue S, Sun S, Zhang K, Zhong C, Zhang H, Oan Y, Lv Y, Yang Ym Li F, Zhang S, Huang F, Ma Y. Electrochemical route to fabricate film-like congjugated microporous polymers and application for organic electronics. / Adv Mater, 2013, 25: 3443鈥?448 ma.201300839" target="_blank" title="It opens in new window">CrossRef
    7. Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules. / Sci China Chem, 2014, 57: 966鈥?72 CrossRef
    8. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. / Sci China Chem, 2014, 57: 973鈥?81 CrossRef
    9. Dou L, You J, Yang J, Chen C-C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. / Nat Photonics, 2012, 6: 180鈥?85 CrossRef
    10. J酶rgensen M, Norrman K, Gevorgyan S A, Tromholy T, Andreasen B, Krebs F C. Stability of polymer solar cells. / Adv Mater, 2012, 24: 580鈥?12 ma.201104187" target="_blank" title="It opens in new window">CrossRef
    11. Cao H, He W, Mao Y, Lin X, Ishikawa K, Dickerson J H, Hess W P. Recent progress in degradation and stabilization of organic solar cells. / J Power Sources, 2014, 264: 168鈥?83 CrossRef
    12. J酶rgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. / Sol Energy Mater Sol Cells, 2008, 92: 686鈥?14 mat.2008.01.005" target="_blank" title="It opens in new window">CrossRef
    13. Norrman K, Gevorgyan S A, Krebs F C. Water-induced degradation of polymer solar cells studied by H218O labeling. / ACS Appl Mater Interfaces, 2009, 1: 102鈥?12 CrossRef
    14. Jeon S O, Lee J Y. Improved lifetime in organic solar cells using a bilayer cathode of organic interlayer/Al. / Sol Energy Mater Sol Cells, 2012, 101, 160鈥?65 mat.2012.01.036" target="_blank" title="It opens in new window">CrossRef
    15. Motaung D E, Malgas G F, Arendse C J. Insights into the stability and thermal degradation of P3HT: C60 blended films for solar cell applications. / J Mater Sci, 2011, 46: 4942鈥?952 CrossRef
    16. Andersen M, Carle J E, Cruys-Bagger N, Lilliedal M R, M. Ham-mond A, Winther-Jensn B, Krebs F. C. Transparent anodes for polymer photovoltaics: oxygen permeability of PEDOT. / Sol Energy Mater Sol Cells, 2007, 91: 539鈥?43 mat.2006.11.006" target="_blank" title="It opens in new window">CrossRef
    17. Huang F, Wu H, Wang D, Yang W, Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. / Chem Mater, 2004, 16: 708鈥?16 CrossRef
    18. Lv M, Li S, Jasieniak J J, Hou J, Zhu J, Tan Z, Watkins S E, Li Y, Chen X. A hyperbranched conjugated polymer as the cathode interlayer for high performance polymer solar cells. / Adv Mater, 2013, 25: 6889鈥?894 ma.201302726" target="_blank" title="It opens in new window">CrossRef
    19. He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y. Simultaneous enhancement of open-circuit voltage short-circuit current density, and fill factor in polymer solar cells. / Adv Mater, 2011, 23: 4636鈥?643 ma.201103006" target="_blank" title="It opens in new window">CrossRef
    20. Yip H L, Jen A K. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. / Energy Environ Sci, 2012, 5, 5994鈥?011 CrossRef
    21. Dang M T, Wantz G, Bejbouji H, Urien M, Dautel O J, Vignau L, Hirsch L. Polymeric solar cells based on P3HT:PC61BM: Role of the casting solvent. / Sol Energ Mat Sol C, 2011, 95: 3408鈥?418 mat.2011.07.039" target="_blank" title="It opens in new window">CrossRef
    22. Duan C, Cai W, Ben B Y, Zhong C, Zhang K, Liu C, Hu Z, Huang F, C. Bazan G, J. Heeger A, Cao Y. Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. / Energy Environ Sci, 2013, 6, 3022鈥?034 CrossRef
    23. Ma D, Lv M, Lei M, Zhu J, Wang H, Chen X. Self-organization of amine-based cathode interfacial materials in inverted polymer solar cells. / ACS Nano, 2014, 8, 1601鈥?608 CrossRef
    24. Dang M T, Hirsch L, Wantz G, Wuest JD. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methanol ester system. / Chem Rev, 2013, 113: 3734鈥?765 CrossRef
    25. Milton J. Rosen Joy T. Kunjappu. / Surfactants and Interfacial Phenomena (4th. ed.). New York: Wiley, 2012 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
The diffusion of constituent materials at interfaces is one of the key factors for device performance and stability. In this work, the effect of interfacial diffusion of a classic interfacial material PFN on device performance of polymer solar cells was studied quantitatively by doping PFN into active layer based on P3HT:PC61BM blend. The PCEs of devices with 550 ppm PFN decrease to half compared to those of the control devices without PFN, which are mainly attributed to the decrease of short-circuit current (J sc) and fill factor (FF). Advanced analyses of equivalent circuit, absorption spectra, and atomic force microscopy indicates that the presence of PFN in the active layer increases the leakage current, decreases the aggregation of P3HT, and reduces the phase separation. This research reveals the physical mechanism of interfacial diffusion in device performance and provides a basis for further improving the performance and stability of PSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700