Inactivation of the positive LuxR-type oligomycin biosynthesis regulators OlmRI and OlmRII increases avermectin production in Streptomyces avermitilis
详细信息    查看全文
  • 作者:Qing Yu (1)
    LinQuan Bai (1)
    XiuFen Zhou (1)
    ZiXin Deng (1)
  • 关键词:Streptomyces ; oligomycin ; regulation ; avermectin ; enhanced production
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:March 2012
  • 年:2012
  • 卷:57
  • 期:8
  • 页码:869-876
  • 全文大小:845KB
  • 参考文献:1. Hopwood D A. / Streptomyces in Nature and Medicine: The Antibiotic Makers. New York: Oxford University Press, 2007
    2. Bibb M. 1995 Colworth Prize Lecture. The regulation of antibiotic production in / Streptomyces coelicolor A3(2). Microbiology, 1996, 142(Pt 6): 1335鈥?344
    3. Bibb M J. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol, 2005, 8: 208鈥?15 CrossRef
    4. Champness W C, Chater K F. Regulation and integration of antibiotic production and morphological differentiation in / Streptomyces spp. In: Patrick Piggot C M, Youngman P, eds. Regulation of Bacterial Differentiation. Washington D.C.: American Society for Microbiology, 1994. 61鈥?3
    5. Fernandez-Moreno M A, Caballero J L, Hopwood D A, et al. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the / bldA tRNA gene of / Streptomyces. Cell, 1991, 66: 769鈥?80 CrossRef
    6. Takano E, Tao M, Long F, et al. A rare leucine codon in adpA is implicated in the morphological defect of / bldA mutants of / Streptomyces coelicolor. Mol Microbiol, 2003, 50: 475鈥?86 CrossRef
    7. White J, Bibb M. bldA dependence of undecylprodigiosin production in / Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol, 1997, 179: 627鈥?33
    8. Ohnishi Y, Yamazaki H, Kato J Y, et al. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in / Streptomyces griseus. Biosci Biotechnol Biochem, 2005, 69: 431鈥?39 CrossRef
    9. Kawachi R, Akashi T, Kamitani Y, et al. Identification of an AfsA homologue (BarX) from / Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol, 2000, 36: 302鈥?13 CrossRef
    10. Nakano H, Takehara E, Nihira T, et al. Gene replacement analysis of the / Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol, 1998, 180: 3317鈥?322
    11. Liu G, Tian Y, Yang H, et al. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in / Streptomyces ansochromogenes that also influences colony development. Mol Microbiol, 2005, 55: 1855鈥?866 CrossRef
    12. De Schrijver A, De Mot R. A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology, 1999, 145 (Pt 6): 1287鈥?288 CrossRef
    13. Walker J E, Saraste M, Runswick M J, et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J, 1982, 1: 945鈥?51
    14. Henikoff S, Wallace J C, Brown J P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol, 1990, 183: 111鈥?32 CrossRef
    15. Wilson D J, Xue Y, Reynolds K A, et al. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of / Streptomyces venezuelae. J Bacteriol, 2001, 183: 3468鈥?475 CrossRef
    16. Sekurova O N, Brautaset T, Sletta H, et al. / In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of / Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol, 2004, 186: 1345鈥?354 CrossRef
    17. He W, Lei J, Liu Y, et al. The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in / Streptomyces hygroscopicus 17997. Arch Microbiol, 2008, 189: 501鈥?10 CrossRef
    18. Anton N, Mendes M V, Martin J F, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in / Streptomyces natalensis. J Bacteriol, 2004, 186: 2567鈥?575 CrossRef
    19. Guo J, Zhao J, Li L, et al. The pathway-specific regulator AveR from / Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics, 2010, 283: 123鈥?33 CrossRef
    20. Enomoto Y, Shiomi K, Matsumoto A, et al. Isolation of a new antibiotic oligomycin G produced by / Streptomyces sp. WK-6150. J Antibiot (Tokyo), 2001, 54: 308鈥?13
    21. Joseph-Horne T, Wood P M, Wood C K, et al. Characterization of a split respiratory pathway in the wheat 鈥渢ake-all鈥?fungus, / Gaeumannomyces graminis var. / tritici. J Biol Chem, 1998, 273: 11127鈥?1133 CrossRef
    22. Daisuke K, Mokoto K, Kaoru Y, et al. Oligomycin SC compounds and anticancer medicine. Japan Patent, JP9208587
    23. Joshi S, Cao G J, Nath C, et al. Oligomycin sensitivity conferring protein of mitochondrial ATP synthase: Deletions in the N-terminal end cause defects in interactions with F1, while deletions in the C-terminal end cause defects in interactions with F0. Biochemistry, 1996, 35: 12094鈥?2103 CrossRef
    24. Miyoshi N, Oubrahim H, Chock P B, et al. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci USA, 2006, 103: 1727鈥?731 CrossRef
    25. Fitch M E, Chang C M, Parslow T G. The BH3 domain is required for caspase-independent cell death induced by Bax and oligomycin. Cell Death Differ, 2000, 7: 338鈥?49 CrossRef
    26. Kobayashi K, Nishino C, Ohya J, et al. Oligomycin E, a new antitumor antibiotic produced by / Streptomyces sp. MCI-2225. J Antibiot (Tokyo), 1987, 40: 1053鈥?057
    27. Li Y C, Fung K P, Kwok T T, et al. Mitochondria-targeting drug oligomycin blocked P-glycoprotein activity and triggered apoptosis in doxorubicin-resistant HepG2 cells. Chemotherapy, 2004, 50: 55鈥?2 CrossRef
    28. Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism / Streptomyces avermitilis. Nat Biotechnol, 2003, 21: 526鈥?31 CrossRef
    29. Ikeda H, Takada Y, Pang C H, et al. Transposon mutagenesis by Tn4560 and applications with avermectin-producing / Streptomyces avermitilis. J Bacteriol, 1993, 175: 2077鈥?082
    30. Omura S, Ikeda H, Ishikawa J, et al. Genome sequence of an industrial microorganism / Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA, 2001, 98: 12215鈥?2220 CrossRef
    31. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1989
    32. Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. A Laboratory Manual. Norwich, United Kingdom: John Innes Foundation, 2000
    33. Albers-Schonberg G, Wallick H, Ormond R E, et al. Novel substances and process for their production. U.S. Patent, 4310519, 1982-01-12
    34. Albers-Schonberg G, Wallick H, Ormond R E, et al. Strain of Streptomyces for producing antiparasitic compounds. U.S. Patent, 4429042, 1984-01-31
    35. Sun Y, Zhou X, Liu J, et al. 鈥?em class="a-plus-plus">Streptomyces nanchangensis鈥? a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology, 2002, 148: 361鈥?71
    36. Finn R D, Mistry J, Tate J, et al. The Pfam protein families database. Nucleic Acids Res, 2009, 38: D211鈥?22 CrossRef
    37. Gust B, Challis G L, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA, 2003, 100: 1541鈥?546 CrossRef
    38. Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002, 30: e36 CrossRef
    39. Marck C, Lefebvre O, Carles C, et al. The TFIIIB-assembling subunit of yeast transcription factor TFIIIC has both tetratricopeptide repeats and basic helix-loop-helix motifs. Proc Natl Acad Sci USA, 1993, 90: 4027鈥?031 CrossRef
  • 作者单位:Qing Yu (1)
    LinQuan Bai (1)
    XiuFen Zhou (1)
    ZiXin Deng (1)

    1. State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
  • ISSN:1861-9541
文摘
Oligomycins are a group of 26 macrocyclic lactones that exhibit broad biological activities, including antifungal, anticancer and nematocidal activities. Analysis of the oligomycin biosynthetic gene cluster (olm) in S. avermitilis revealed 2 tandem LuxR-type regulators, OlmRI (931 aa) and OlmRII (941 aa), with shared identity of 38%. Gene replacement of olmRI or olmRII abolished oligomycin production, and this production could be partially restored in the disruptants by introducing cloned olmRI and olmRII with their native promoters, demonstrating the essential role of OlmRI and OlmRII for oligomycin biosynthesis. Quantitative real-time RT-PCR analysis revealed that transcription of 14 olm genes was differentially affected by the deletion of olmRI and olmRII. Unexpectedly, avermectin production in both mutants was enhanced at least 4-fold. The identification of the positive cluster-situated regulators, OlmRI and OlmRII, paves the way for the transcriptional analysis of oligomycin biosynthesis and for the enhancement of oligomycin and avermectin production through regulator engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700