Construction of Streptomyces lydicus A01 transformant with the chit33 gene from Trichoderma harzianum CECT2413 and its biocontrol effect on Fusaria
详细信息    查看全文
  • 作者:Qiong Wu (1)
    LinQuan Bai (2)
    WeiCheng Liu (3)
    YingYing Li (1)
    CaiGe Lu (3)
    YaQian Li (1)
    ZhenYa Lin (1)
    Meng Wang (1)
    ChunSheng Xue (4)
    Jie Chen (4)
  • 关键词:Streptomyces lydicus A01 ; chit33 conjugal transformant ; wide ; type strain ; chitinase activity ; natamycin production ; Fusarium
  • 刊名:Chinese Science Bulletin
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:58
  • 期:26
  • 页码:3266-3273
  • 全文大小:957KB
  • 参考文献:1. Sobowale A A, Odebode A C, Cardwell K F, et al. Antagonistic potential of / Trichoderma longibrachiatum and / T. hamatum resident on maize ( / Zea mays) plant against / Fusarium verticillioides (Nirenberg) isolated from rotting maize stem. Arch Phytopathol Plant Prot, 2010, 43: 744鈥?53 CrossRef
    2. Chakrabarti A, Rep M, Wang B, et al. Variation in potential effector genes distinguishing Australian and non-Australian isolates of the cotton wilt pathogen / Fusarium oxysporum f.sp. / vasinfectum. Plant Pathol, 2011, 60: 232鈥?43 CrossRef
    3. Beckman C H, Roberts E M. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv Bo Res, 1995, 21: 35鈥?7 CrossRef
    4. Crawford M S, Kolattukudy P E. Pectate lyase from / Fusarium solani f.sp. / pisi: Purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity. Arch Biochem Biophys, 1987, 258: 196鈥?05 CrossRef
    5. Kommendahl T, Windels C E. Root-, stalk-, and ear-infecting / Fusarium species on corn in the USA. In: Nelson P E, Toussoun T A, Cook R J, ed. Fusarium Diseases, Biology and Taxonomy. University Park: The Pennsylvania State University Press, 1981. 94鈥?03
    6. Someya N, Tsuchiya K, Yoshida T, et al. Combined application of / Pseudomonas fluorescens strain LRB3W1 with a low dosage of benomyl for control of cabbage yellows caused by / Fusarium oxysporum f.sp. / Conglutinans. Biocontrol Sci Tech, 2007, 17: 21鈥?1 CrossRef
    7. Fravel D, Olivain C, Alabouvette C. / Fusarium oxysporum and its biocontrol. New Phytol, 2003, 157: 493鈥?02 CrossRef
    8. Lu C G, Liu W C, Qiu J Y, et al. Identification of an antifungal metabolite produced by a potential biocontrol / Actinomyces strain A01. Braz J Micro, 2008, 39: 701鈥?07 CrossRef
    9. te Welscher Y M, ten Napel H H, Balagu茅 M M, et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem, 2008, 283: 6393鈥?401 CrossRef
    10. te Welscher Y M, Jones L, van Leeuwen R M, et al. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Ch, 2010, 54: 2618鈥?625 CrossRef
    11. Lalitha P, Shapiro B L, Loh A R, et al. Amphotericin B and natamycin are not synergistic / in vitro against / Fusarium and / Aspergillus spp. isolated from keratitis. Br J Ophthalmol, 2011, 95: 744鈥?45 CrossRef
    12. de Ruig W G, van den Berg G. Influence of the fungicdes sorbate and natamycin in cheese coatings on the quality of the cheese. Neth Milk Dairy J, 1985, 39: 165鈥?69
    13. Pintado C M B S, Ferreira M A S S, Sousa I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control, 2010, 21: 240鈥?46 CrossRef
    14. Ben铆tez T, Rinc贸n A M, Lim贸n M C, et al. Biocontrol mechanisms of / Trichoderma strains. Int Microbiol, 2004, 7: 249鈥?60
    15. Segarra G, Casanova E, Avil茅s M, et al. / Trichoderma asperellum strain T34 controls Fusarium Wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol, 2010, 59: 141鈥?49 CrossRef
    16. Shashi K, Ashish J, Shukla D N. Antagonistic Effect of / Trichoderma strains against / Fusarium oxysporum f.sp. / udum buttler causing Wilt of Pigeon Pea. Agric Sci Dig, 2010, 30: 189鈥?91
    17. Lopez-Mondejar R, Ros M, Pascual J A. Mycoparasitism-related genes expression of / Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control, 2011, 56: 59鈥?6 CrossRef
    18. Viterbo A, Haran S, Friesem D, et al. Antifungal activity of a novel endochitinase gene ( / chit36) from / Trichoderma harzianum Rifai TM. FEMS Microbiol Lett, 2001, 200: 169鈥?74 CrossRef
    19. Kimoto H, Akamatsu M, Fujii Y, et al. Discoidin domain of chitosanase is required for binding to the fungal cell wall. J Mol Microb Biotech, 2010, 18: 14鈥?3 CrossRef
    20. Tanabea T, Kawaseb T, Watanabeb T, et al. Purification and characterization of a 49-kDa chitinase from / Streptomyces griseus HUT 6037. J Biosci Bioeng, 2000, 89: 27鈥?2 CrossRef
    21. Chen Z, Wen J, Song Y, Wen Y, et al. Enhancement and selective production of avermectin B by recombinants of / Streptomyces avermitilis via intraspecific protoplast fusion. Chin Sci Bull, 2007, 52: 616鈥?22 CrossRef
    22. Wang X J, Wang X C, Xiang W S. Improvement of milbemycin-producing / Streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants. World J Microb Biot, 2009, 25: 1051鈥?056 CrossRef
    23. Limon M C, Lora J M, Garcfa I, et al. Primary structure and expression pattern of the 33-kDa chitinasegene from the mycoparasitic fungus / Trichoderma harzianum. Curr Genet, 1995, 28: 478鈥?83 CrossRef
    24. Hong B, Wu B Y, Li Y. Production of C-terminal amidated recombinant salmon calcitonin in / Streptomyces lividans. Appl Biochem Biotech, 2003, 110: 113鈥?23 CrossRef
    25. Kieser T, Bibb M J, Buttner M J, et al. Practical / Streptomyces Genetics. Norwich, England: The John Innes Foundation, 2000. 249鈥?50
    26. Harman G E, Hayes C K, Lorito M, et al. Chitinolytic enzymes of / Trichoderma harzianum: Purification of chitobiosidase and endochitinase. Phytopathology, 1993, 83: 313鈥?18 CrossRef
    27. Reissig J L, Storminger J L, Leloir L F. A modified colorimetric method for the estimation of / N-acetylamino sugars. J Biol Chem, 1955, 217: 959鈥?66
    28. Nampoothiri K M, Baijua T V, Sandhya C, et al. Process optimization for antifungal chitinase production by / Trichoderma harzianum. Process Biochem, 2004, 39: 1583鈥?590 CrossRef
    29. Kim K J, Yang Y J, Kim J G. Purification and characterization of chitinase from / Streptomyces sp. M-20. J Biochem Mol Biol, 2003, 36: 185鈥?89 CrossRef
    30. Li Y Y, Tang J, Fu K H, et al. Construction of transgenic / Trichoderma koningi with / chit42 of / Metarhizium anisopliae and analysis of its activity against the Asian corn borer. J Environ Sci Heal B, 2012, 47: 622鈥?30
    31. Nawani N N, Kapadnis B P. Optimization of chitinase production using statistics based experimental designs. Process Biochem, 2005, 40: 651鈥?60 CrossRef
    32. Noack D, Geuther R, Tonew M, et al. Expression and secretion of interferon-伪1 by / Streptomyces lividans: Use of staphylokinase signals and amplification of a neo gene. Gene, 1988, 68: 53鈥?2 CrossRef
    33. Bender E, Koller K P, Engels J W. Secretory synthesis of human interleukin-2 by / Streptomyces lividans. Gene, 1990, 86: 227鈥?32 CrossRef
  • 作者单位:Qiong Wu (1)
    LinQuan Bai (2)
    WeiCheng Liu (3)
    YingYing Li (1)
    CaiGe Lu (3)
    YaQian Li (1)
    ZhenYa Lin (1)
    Meng Wang (1)
    ChunSheng Xue (4)
    Jie Chen (4)

    1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
    2. School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
    3. Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
    4. School of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
  • ISSN:1861-9541
文摘
Streptomyces lydicus A01 resists many plant pathogens (including Fusarium spp.) by producing the antifungal agent natamycin, which binds to the ergosterol of fungal cell membranes and inhibits the growth of pathogens. Trichoderma harzianum CECT2413 is a widely-distributed soil fungus that antagonizes several plant fungal pathogens (including Fusarium spp.) by producing chitinase and degrading chitin, a major component of the fungal cell wall. This study attempted to enhance the biocontrol effect of S. lydicus A01 on Fusarium spp. by transforming the chitinase gene of Trichoderma. Chitinase and natamycin could act synergistically on both the cell walls and cell membranes of pathogens. The 33-kD chitinase-encoding gene (chit33) was cloned and conjugal-transformed from T. harzianum CECT2413 to S. lydicus A01, and then confirmed via polymerase chain reaction (PCR) assays. Subsequent analyses using the 3,5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry showed that compared with its wild type strain (WT), the S. lydicus A01 conjugal transformant (CT) with chit33 gene exhibited substantially higher chitinase activity and natamycin production. The resistance of S. lydicus A01-chit33 CT and WT to four Fusaria in crops and vegetables was tested via the cup-plate method. Compared with the WT, the conjugal transformant of S. lydicus A01 with chit33 gene from T. harzianum CECT2413 showed greatly increased biocontrol effect on fusarium disease. This study would be beneficial to the development of high-quality antifungal bio-agents for agricultural applications via the synergy between the previously non-existent and pre-existing functions achieved through heterogeneous gene transformation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700