Intrinsic carrier concentration as a function of stress in (001), (101) and (111) biaxially-Strained-Si and Strained-Si1-x Ge x
详细信息    查看全文
  • 作者:Zhao Jin ; Liping Qiao ; Lidong Liu…
  • 关键词:strain ; intrinsic carrier concentration ; KP theory ; density of state
  • 刊名:Journal of Wuhan University of Technology--Materials Science Edition
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:30
  • 期:5
  • 页码:888-893
  • 全文大小:941 KB
  • 参考文献:[1]Jiseok K, Fischetti and Massimo V. Electronic Band Structure Calculations for Biaxially Strained Si, Ge, and III-V Semiconductors[J]. J. Appl. Phys., 2010, 108(1): 013 710CrossRef
    [2]Weber O, Takenaka M and Takagi S I. Experimental Determination of Shear Stress Induced Electron Mobility Enhancements in Si and Biaxially Strained-Si Metal-Oxide-Semiconductor Field-Effect Transistors[J]. J. Appl. Phys., 2010, 49: 074 101CrossRef
    [3]Rastelli A, Stoffel M, Denker U, et al. Strained Sige Islands on Si(001): Evolution, Motion, Dissolution, and Plstic Relaxation[J]. Physica Status Solidi (a), 2006, 203(14): 3506-511CrossRef
    [4]Adachi S, Asano T. Investigation of Enhanced Impact Ionization in Uniaxially Strained Si N-Channel Metal Oxide Semiconductor Field Effect Transistor[J]. J. Appl. Phys., 2010, 49(4): 04DC14CrossRef
    [5]Shu-Tong C, Jacky H, Ming T, et al. Effective Mass and Subband Structure of Strained Si in A PMOS Inversion Layer with External Stress[J]. Thin Solid Films, 2010, 518(6): 154-58CrossRef
    [6]Mizuno T, Mizoguchi N, Tanimoto K, et al. New Source Heterojunction Structures with Relaxed/Strained Semiconductors for Quasi- Ballistic Complementary Metal-Oxide-Semiconductor Transistors: Relaxation Technique of Strained Substrates and Design of Sub-10 nm Devices[J]. J. Appl. Phys., 2010, 49(4): 04DC13CrossRef
    [7]Mizuno T, Hasegawa M, Ikeda K, et al. Abrupt Lateral-Source Heterostructures with Relaxed/Strained Layers For Ballistic Complementary Metal Oxide Semiconductor Transistors Fabricated by Local O+ Ion-Induced Relaxation Technique of Strained Substrates[J]. J. Appl. Phys., 2011, 50(4): 010 107CrossRef
    [8]Everett W, Philippe M, Lucian S, et al. Physics of Hole Transport in Strained Silicon MOSFET Inversion Layers[J]. IEEE Trans. Electron Devices, 2006, 53(8): 1840-851CrossRef
    [9]Mizuno T, Moriyama Y, Tezuka T, et al. Single Source Heterojunction Metal-Oxide-Semiconductor Transistors for Quasi-Ballistic Devices: Optimization of Source Heterostructures and Electron Velocity Characteristics at Low Temperature[J]. J. Appl. Phys., 2011, 50(1): 04DC02CrossRef
    [10]Oh J, Huang, J, Yen-Ting C, et al. Comparison of Ohmic Contact Resistances of N- and P-Type Ge Source/Drain and Their Impact on Transport Characteristics of Ge Metal Oxide Semiconductor Field Effect Transistors[J]. Thin Solid Films, 2011, 520(1): 442-44CrossRef
    [11]Song J J, Zhang H M, Hu H Y, et al. Valence Band Structure of Strained Si/(111)Si1-xGex[J]. Sci. China Ser. G, 2010, 53(3): 454-57CrossRef
    [12]Song J J, Zhang H M, Hu H Y, et al. Determination of Conduction Band Edge Characteristics of Strained Si/Si1-xGex[J]. Chin. Phys., 2007, 16(12): 3827-831CrossRef
    [13]Robbins D J, Canham L T, Barnett S J, et al. Near-Band-Gap Photoluminescence from Pseudomorphic Si1-xGex Single Layers on Silicon[J]. J. Appl. Phys., 1992, 71(3): 1 407CrossRef
    [14]Dutartre D, Bramond G, Souifi A, et al. Excitonic Photoluminescence from Si-Capped Strained Si1-xGex Layers[J]. Phys. Rev. B, 1991, 44: 11 525CrossRef
    [15]Bean J C. Silicon Based Semiconductor Heterostructures: Column IV Bandgap Engineering[J]. Proc. IEEE, 1992, 80: 571-87CrossRef
    [16]Eberhardt J, Kasper E. Bandgap Narrowing in Strained SiGe on the Basis of Electrical Measurements on Si/SiGe/Si Hetero Bipolar Transistors[J]. Mater. Sci. Eng. B, 2002, 89: 93-8CrossRef
    [17]Lang D V, People R, Bean J C, et al. Measurement of the Band Gap of Si1-x Gex/Si Strained-Layer Heterostructures[J]. Appl. Phys. Lett., 1985, 47(12): 1333-337CrossRef
    [18]Spitzer J, Thonke K, Sauer R, et al. Direct Observation of Band-Edge Luminescence and Alloy Luminescence from Ultrametastable Silicon- Germanium Alloy Layers[J]. Appl. Phys. Lett., 1992, 60(14): 1729-731CrossRef
    [19]Yang L F, Jeremy R W, Richard C W, et al. Si/SiGe Heterostructure Parameters for Device Simulations[J]. Semicond. Sci. Tech., 2004, 19(10): 1174-182CrossRef
    [20]Douglas J P. Si/SiGe Heterostructures: from Material and Physics to Devices and Circuits[J]. Semiconductor Science and Technology, 2004, 19: 75-08CrossRef
    [21]Liu E K, Zhu B Sh, Luo J Sh. Semiconductor Physics [M]. Beijing: Defense Industry Press, 1994
    [22]Gu Z Y, Tian L L, Fu L W. Semiconductor Physics [J]. Beijing: Publishing House of Electronics Industry, 1995
  • 作者单位:Zhao Jin (1)
    Liping Qiao (2)
    Lidong Liu (1)
    Zhili He (1)
    Chen Guo (1)
    Ce Liu (1)

    1. School of Information Engineering, Chang’an University, Xi’an, 710064, China
    2. School of Information Engineering, Xizang University for Nationalities, Xianyang, 712082, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Chinese Library of Science
  • 出版者:Wuhan University, co-published with Springer
  • ISSN:1993-0437
文摘
Intrinsic carrier concentration (n i) is one of the most important physical parameters for understanding the physics of strained Si and Si1-x Ge x materials as well as for evaluating the electrical properties of Si-based strained devices. Up to now, the report on quantitative results of intrinsic carrier concentration in strained Si and Si1-x Ge x materials has been still lacking. In this paper, by analyzing the band structure of strained Si and Si1-x Ge x materials, both the effective densities of the state near the top of valence band and the bottom of conduction band (N c and N v) at 218, 330 and 393 K and the intrinsic carrier concentration related to Ge fraction (x) at 300 K were systematically studied within the framework of KP theory and semiconductor physics. It is found that the intrinsic carrier concentration in strained Si (001) and Si1-x Ge x (001) and (101) materials at 300 K increases significantly with increasing Ge fraction (x), which provides valuable references to understand the Si-based strained device physics and design. Keywords strain intrinsic carrier concentration KP theory density of state

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700