Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe
详细信息    查看全文
  • 作者:Mahmoud Roushani ; Akram Valipour
  • 关键词:Cyclic voltammetry ; Electrochemical impedance ; Differential pulse voltammetry ; Nanomaterial ; Hexacyanoferrate ; Scanning electron microscopy ; Tumor marker ; Pregnancy marker ; Trophoblasts
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:845-853
  • 全文大小:976 KB
  • 参考文献:1.Fang T, Feng Y, Huangxian J (2007) Sensitive reagentless electrochemical immunosensor based on an ormosil sol–gel membrane for human chorionic gonadotrophin. Biosens Bioelectron 22:2945–2951CrossRef
    2.Lund H, Torsetnes SB, Paus E, Nustad K, Reubsaet L, Halvorsen TG (2009) Exploring the Complementary Selectivity of Immunocapture and MS Detection for the Differentiation between hCG Isoforms in Clinically Relevant Samples. J Protein Res 8:5241–5252CrossRef
    3.Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors. Sensors 13:4811–4840CrossRef
    4.Tang DP, Yuan R, Chai YQ, Zhong X, Liu Y, Dai JY (2004) Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes. Biochem Eng J 22:43–49CrossRef
    5.Yagiuda K, Hemmi A, Ito S, Asano Y (1996) Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens Bioelectron 11:703CrossRef
    6.Ramanaviciene A, Ramanavicius A (2004) Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens Bioelectron 20:1076–1082CrossRef
    7.Tang DP, Yuan R, Chai YQ, Dai JY, Zhong X, Liu Y (2004) A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy. Bioelectrochemistry 65:15–22CrossRef
    8.Ding YJ, Liu J, Wang H, Shen GL, Yu RQ (2007) A piezoelectric immunosensor for the detection of α-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial. Biomaterials 28:2147–2154CrossRef
    9.Li R, Wu D, Li H, Xu C, Wang H, Zhao Y, Cai Y, Wei Q, Du B (2011) Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Anal Biochem 414:196–201CrossRef
    10.Wei Q, Li R, Du B, Wu D, Han Y, Cai Y, Zhao Y, Xin X, Li H, Yang M (2011) Multifunctional mesoporous silica nanoparticles as sensitive labels for immunoassay of human chorionic gonadotropin. Sensors Actuators B 153:256–260CrossRef
    11.Mao L, Yuan R, Chai Y, Zhuo Y, Yang X (2010) A new electrochemiluminescence immunosensor based on Ru(bpy)3 2+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sensors Actuators B 149:226–232CrossRef
    12.Wu D, Zhang Y, Shi L, Cai Y, Ma H, Du B, Wei Q (2013) Electrochemical Immunosensor for Ultrasensitive Detection of Human Chorionic Gonadotropin Based on Pd@SBA-15. Electroanalysis 25:427–432CrossRef
    13.Teixeira S, Conlan RS, Guy OJ, Goreti M, Sales F (2014) Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. J Mater Chem B 2:1852–1865CrossRef
    14.Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun 11:846–849CrossRef
    15.Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085–1088CrossRef
    16.Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
    17.Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82:125–130CrossRef
    18.Huang KJ, Niu DJ, Xie WZ, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102–108CrossRef
    19.Ganesan V, John SA, Ramaraj R (2001) Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion film. J Electroanal Chem 502:167–173CrossRef
    20.Simon BP, Fabregas E (2004) Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens Bioelectron 19:1131–1142CrossRef
    21.Razumiene J, Meskys R, Gurevieiene V, Laurinavieius V, Reshetova MD, Ryabov AD (2000) 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions. Electrochem Commun 2:307–311CrossRef
    22.Hartley AM, Wilson GS (1966) Unusual adsorption effects in the electrochemical reduction of flavin mononucleotide at mercury electrodes. Anal Chem 38:681–687CrossRef
    23.Roushani M, Karami E, Salimi A, Sahraei R (2013) Amperometric detection of hydrogen peroxide at nano-ruthenium oxide/riboflavin nanocomposite-modified glassy carbon electrodes. Electrochim Acta 113:134–140CrossRef
    24.Roushani M, Abdi Z (2014) Novel electrochemical sensor based on graphene quantumdots/riboflavin nanocomposite for the detection of persulfate. Sensors Actuators B 201:503–510CrossRef
    25.Wang GL, Dong YM, Zhu XY, Zhang WJ, Wang C, Jiao HJ (2011) Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes. Analyst 136:5256–5260CrossRef
    26.Macdonal JR (1987) Impedance Spectroscopy. Wiley, New York
    27.Liu N, Chen X, Ma Z (2013) Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 48:33–38CrossRef
    28.Salimi A, Kavosi B, Fathi F, Hallaj R (2013) A highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosens Bioelectron 42:439–446CrossRef
    29.Chai R, Yuan R, Chai YQ, Ou CF, Cao SR, Li XL (2008) Amperometric immunosensors based on layer-by-layer assemblyof gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta 74:1330–1336CrossRef
    30.Yang GM, Chang YB, Yang H, Tan L, Wu ZS, Lu XX, Yang YH (2009) The preparation of reagentless electrochemical immunosensor based on a nano-gold and chitosan hybrid film for human chorionic gonadotrophin. Anal Chim Acta 644:72–77CrossRef
    31.Tao M, Li XF, Wu ZS, Wang M, Mei H, Yang YH (2011) The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 412:550–555CrossRef
    32.Yang GM, Yang XY, Yang CY, Yang YH (2011) A reagentless amperometric immunosensor for human chorionic gonadotrophin based on a gold nanotube arrays electrode. Colloids Surf A Physicochem Eng Asp 389:195–200CrossRef
    33.Yang L, Zhao H, Fan S, Deng S, Lv Q, Lin J, Li CP (2014) Label-free electrochemical immunosensor based on gold–siliconcarbide nanocomposites for sensitive detection of humanchorionic gonadotrophin. Biosens Bioelectron 57:199–206CrossRef
    34.Wang J, Yuan R, Chai Y, Cao S, Guan Sh FP, Min L (2010) A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin. Biochem Eng J 51:95–101CrossRef
  • 作者单位:Mahmoud Roushani (1)
    Akram Valipour (1)

    1. Department of Chemistry, Ilam University, P.O. Box 69315516, Ilam, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The aim of this study was to develop an electrochemical immunoassay system to detect of human chorionic gonadotropin (hCG). The immunosensor was constructed by covalent immobilization of silver nanoparticles (AgNPs) onto a nanocomposite containing graphene, chitosan (Chit) and 1-methyl-3-octylimidazolium tetrafluoroborate as ionic liquid (IL). Silver nanoparticles were used as a linker to immobilize hCG antibody onto the modified electrode. The amino groups of the antibody were covalently attached to an AgNP/g-IL-Chit nanocomposite. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to characterize the assembly process of the immunosensor. Riboflavin was used as the redox probe. Differential pulse voltammetry demonstrated that the formation of antibody–antigen complexes decreases the peak current of redox pair at the AgNP/Gr-IL-Chit/GCE (at a working potential of −0.38 V). The signal changes of riboflavin are used to detect hCG with broad response ranges from 0.0212 to 530 mIU.mL−1 and a low detection limit of 0.0066 ± 0.02 mIU.mL−1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700