Centrosomes in the DNA damage response—the hub outside the centre
详细信息    查看全文
  • 作者:Lisa I. Mullee ; Ciaran G. Morrison
  • 关键词:Centriole ; Centrosome ; PCM ; Checkpoint ; Cancer ; ATM ; CHK1 ; PLK1
  • 刊名:Chromosome Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:24
  • 期:1
  • 页码:35-51
  • 全文大小:1,173 KB
  • 参考文献:Agircan FG, Schiebel E (2014) Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet 10, e1004672PubMed PubMedCentral CrossRef
    Agircan FG, Schiebel E, Mardin BR (2014) Separate to operate: control of centrosome positioning and separation. Philos Trans R Soc Lond B Biol Sci 369:20130461PubMed PubMedCentral CrossRef
    Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA, O’Driscoll M (2004) Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 13:3127–3138PubMed CrossRef
    Alderton GK, Galbiati L, Griffith E, Surinya KH, Neitzel H, Jackson AP, Jeggo PA, O’Driscoll M (2006) Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8:725–733PubMed CrossRef
    Alliegro MC, Alliegro MA (2008) Centrosomal RNA correlates with intron-poor nuclear genes in Spisula oocytes. Proc Natl Acad Sci U S A 105:6993–6997PubMed PubMedCentral CrossRef
    Antonczak AK, Mullee LI, Wang Y, Comartin D, Inoue T, Pelletier L, Morrison CG (2015) Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response. Oncogene, in press
    Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276:18665–18672PubMed CrossRef
    Arquint C, Sonnen KF, Stierhof YD, Nigg EA (2012) Cell-cycle-regulated expression of STIL controls centriole number in human cells. J Cell Sci 125:1342–1352PubMed CrossRef
    Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 369:20130464PubMed PubMedCentral CrossRef
    Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G (2003) PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116:1551–1562PubMed CrossRef
    Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33PubMed PubMedCentral CrossRef
    Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130:105–115PubMed CrossRef
    Barbelanne M, Tsang WY (2014) Molecular and cellular basis of autosomal recessive primary microcephaly. BioMed Res Int 2014:547986PubMed PubMedCentral CrossRef
    Barr AR, Kilmartin JV, Gergely F (2010) CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol 189:23–39PubMed PubMedCentral CrossRef
    Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386PubMed CrossRef
    Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 9:371–377PubMed PubMedCentral CrossRef
    Bazzi H, Anderson KV (2014) Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 111:E1491–E1500PubMed PubMedCentral CrossRef
    Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329:18–25PubMed CrossRef
    Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Edde B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589PubMed PubMedCentral CrossRef
    Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34PubMed CrossRef
    Bourke E, Dodson H, Merdes A, Cuffe L, Zachos G, Walker M, Gillespie D, Morrison CG (2007) DNA damage induces Chk1-dependent centrosome amplification. EMBO Rep 8:603–609PubMed PubMedCentral CrossRef
    Bourke E, Brown JA, Takeda S, Hochegger H, Morrison CG (2010) DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2. Oncogene 29:616–624PubMed CrossRef
    Boutros R, Ducommun B (2008) Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle 7:401–406PubMed CrossRef
    Brown CR, Doxsey SJ, White E, Welch WJ (1994) Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 160:47–60PubMed CrossRef
    Brown JA, Bourke E, Liptrot C, Dockery P, Morrison CG (2010) MCPH1/BRIT1 limits ionizing radiation-induced centrosome amplification. Oncogene 29:5537–5544PubMed CrossRef
    Brownlee CW, Rogers GC (2013) Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 70:1021–1034PubMed CrossRef
    Cabral G, Sans SS, Cowan CR, Dammermann A (2013) Multiple mechanisms contribute to centriole separation in C. elegans. Curr Biol 23:1380–1387PubMed PubMedCentral CrossRef
    Cajanek L, Nigg EA (2014) Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci U S A 111:E2841–E2850PubMed PubMedCentral CrossRef
    Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B (2005) CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4:1233–1238PubMed CrossRef
    Chavali PL, Putz M, Gergely F (2014) Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 369:20130468PubMed PubMedCentral CrossRef
    Chestukhin A, Pfeffer C, Milligan S, DeCaprio JA, Pellman D (2003) Processing, localization, and requirement of human separase for normal anaphase progression. Proc Natl Acad Sci U S A 100:4574–4579PubMed PubMedCentral CrossRef
    Chouinard G, Clement I, Lafontaine J, Rodier F, Schmitt E (2013) Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 8:7PubMed PubMedCentral CrossRef
    Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204PubMed PubMedCentral CrossRef
    Conroy PC, Saladino C, Dantas TJ, Lalor P, Dockery P, Morrison CG (2012) C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle 11:3769–3778PubMed PubMedCentral CrossRef
    Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E, Callaini G, Glover DM, Bettencourt-Dias M (2009) The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19:43–49PubMed CrossRef
    Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266PubMed PubMedCentral CrossRef
    Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG (2011) Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193:307–318PubMed PubMedCentral CrossRef
    Dantas TJ, Daly OM, Morrison CG (2012) Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 69:2979–2997PubMed CrossRef
    De Souza CP, Ellem KA, Gabrielli BG (2000) Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp Cell Res 257:11–21PubMed CrossRef
    Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ (1998) Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141:163–174PubMed PubMedCentral CrossRef
    Dodson H, Wheatley SP, Morrison CG (2007) Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle 6:364–370PubMed CrossRef
    Douthwright S, Sluder G (2014) Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 229:1427–1436PubMed PubMedCentral CrossRef
    Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche JP, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B (2004) Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci 117:2523–2531PubMed CrossRef
    Firat-Karalar EN, Rauniyar N, Yates JR 3rd, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24:664–670PubMed PubMedCentral CrossRef
    Fletcher L, Cerniglia GJ, Nigg EA, Yend TJ, Muschel RJ (2004) Inhibition of centrosome separation after DNA damage: a role for Nek2. Radiat Res 162:128–135PubMed CrossRef
    Fry AM, Meraldi P, Nigg EA (1998) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–481PubMed PubMedCentral CrossRef
    Fu J, Glover DM (2012) Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104PubMed PubMedCentral CrossRef
    Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747PubMed CrossRef
    Furnari B, Rhind N, Russell P (1997) Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277:1495–1497PubMed CrossRef
    Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282PubMed PubMedCentral CrossRef
    Gimenez-Abian JF, Diaz-Martinez LA, Beauchene NA, Hsu WS, Tsai HJ, Clarke DJ (2010) Determinants of Rad21 localization at the centrosome in human cells. Cell Cycle 9:1759–1763PubMed CrossRef
    Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369:20130467PubMed PubMedCentral CrossRef
    Golan A, Pick E, Tsvetkov L, Nadler Y, Kluger H, Stern DF (2010) Centrosomal Chk2 in DNA damage responses and cell cycle progression. Cell Cycle 9:2647–2656PubMed PubMedCentral CrossRef
    Gorr IH, Boos D, Stemmann O (2005) Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol Cell 19:135–141PubMed CrossRef
    Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179:321–330PubMed PubMedCentral CrossRef
    Gregson HC, Schmiesing JA, Kim JS, Kobayashi T, Zhou S, Yokomori K (2001) A potential role for human cohesin in mitotic spindle aster assembly. J Biol Chem 276:47575–47582PubMed CrossRef
    Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, Vernay B, Al Sanna N, Saggar A, Hamel B, Earnshaw WC, Jeggo PA, Jackson AP, O’Driscoll M (2008) Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat Genet 40:232–236PubMed PubMedCentral CrossRef
    Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ (2011) MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 13:1325–1334PubMed CrossRef
    Guan J, Ekwurtzel E, Kvist U, Yuan L (2008) Cohesin protein SMC1 is a centrosomal protein. Biochem Biophys Res Commun 372:761–764PubMed CrossRef
    Guichard P, Chretien D, Marco S, Tassin AM (2010) Procentriole assembly revealed by cryo-electron tomography. EMBO J 29:1565–1572PubMed PubMedCentral CrossRef
    Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A 95:12983–12988PubMed PubMedCentral CrossRef
    Hsu LC, Doan TP, White RL (2001) Identification of a gamma-tubulin-binding domain in BRCA1. Cancer Res 61:7713–7718PubMed
    Hut HM, Lemstra W, Blaauw EH, Van Cappellen GW, Kampinga HH, Sibon OC (2003) Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 14:1993–2004PubMed PubMedCentral CrossRef
    Inanc B, Dodson H, Morrison CG (2010) A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 21:3866–3877PubMed PubMedCentral CrossRef
    Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148PubMed CrossRef
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078PubMed PubMedCentral CrossRef
    Jeffers LJ, Coull BJ, Stack SJ, Morrison CG (2008) Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 27:139–144PubMed CrossRef
    Jilani Y, Lu S, Lei H, Karnitz LM, Chadli A (2015) UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation. Cancer Lett 357:114–120PubMed PubMedCentral CrossRef
    Kanai M, Uchida M, Hanai S, Uematsu N, Uchida K, Miwa M (2000) Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes. Biochem Biophys Res Commun 278:385–389PubMed CrossRef
    Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23:2451–2462PubMed PubMedCentral CrossRef
    Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292PubMed CrossRef
    Katsura M, Tsuruga T, Date O, Yoshihara T, Ishida M, Tomoda Y, Okajima M, Takaku M, Kurumizaka H, Kinomura A, Mishima HK, Miyagawa K (2009) The ATR-Chk1 pathway plays a role in the generation of centrosome aberrations induced by Rad51C dysfunction. Nucleic Acids Res 37:3959–3968PubMed PubMedCentral CrossRef
    Kawamura K, Morita N, Domiki C, Fujikawa-Yamamoto K, Hashimoto M, Iwabuchi K, Suzuki K (2006) Induction of centrosome amplification in p53 siRNA-treated human fibroblast cells by radiation exposure. Cancer Sci 97:252–258PubMed CrossRef
    Kenney J, Karsenti E, Gowen B, Fuller SD (1997) Three-dimensional reconstruction of the mammalian centriole from cryoelectron micrographs: the use of common lines for orientation and alignment. J Struct Biol 120:320–328PubMed CrossRef
    Kim MK, Dudognon C, Smith S (2012) Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep 13:724–732PubMed PubMedCentral CrossRef
    Kim SH, Park ER, Joo HY, Shen YN, Hong SH, Kim CH, Singh R, Lee KH, Shin HJ (2014) RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett 346:249–256PubMed CrossRef
    Klingseisen A, Jackson AP (2011) Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 25:2011–2024PubMed PubMedCentral CrossRef
    Ko MJ, Murata K, Hwang DS, Parvin JD (2006) Inhibition of BRCA1 in breast cell lines causes the centrosome duplication cycle to be disconnected from the cell cycle. Oncogene 25:298–303PubMed CrossRef
    Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan N, Walsh CA, Reiter JF (2015) Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 4
    Koledova Z, Kafkova LR, Kramer A, Divoky V (2010) DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells. Stem Cells 28:450–461PubMed
    Kong X, Ball AR Jr, Sonoda E, Feng J, Takeda S, Fukagawa T, Yen TJ, Yokomori K (2009) Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol Biol Cell 20:1289–1301PubMed PubMedCentral CrossRef
    Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6:884–891PubMed CrossRef
    Kubo A, Tsukita S (2003) Non-membranous granular organelle consisting of PCM-1: subcellular distribution and cell-cycle-dependent assembly/disassembly. J Cell Sci 116:919–928PubMed CrossRef
    La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A (2005) The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 168:713–722PubMed PubMedCentral CrossRef
    Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ (2015) p53 protects against genome instability following centriole duplication failure. J Cell Biol 210:63–77PubMed PubMedCentral CrossRef
    Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158PubMed CrossRef
    Lee K, Rhee K (2012) Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11:2476–2485PubMed CrossRef
    Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK (2005) Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171:35–45PubMed PubMedCentral CrossRef
    Loffler H, Bochtler T, Fritz B, Tews B, Ho AD, Lukas J, Bartek J, Kramer A (2007) DNA damage-induced accumulation of centrosomal Chk1 contributes to its checkpoint function. Cell Cycle 6:2541–2548PubMed CrossRef
    Loffler H, Fechter A, Liu FY, Poppelreuther S, Kramer A (2013) DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 32:2963–2972PubMed CrossRef
    Lotti LV, Ottini L, D’Amico C, Gradini R, Cama A, Belleudi F, Frati L, Torrisi MR, Mariani-Costantini R (2002) Subcellular localization of the BRCA1 gene product in mitotic cells. Genes Chromosomes Cancer 35:193–203PubMed CrossRef
    Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169PubMed CrossRef
    Mahjoub MR, Stearns T (2012) Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 22:1628–1634PubMed PubMedCentral CrossRef
    Mardin BR, Agircan FG, Lange C, Schiebel E (2011) Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. Curr Biol 21:1145–1151PubMed CrossRef
    Marshall WF, Rosenbaum JL (2000) Are there nucleic acids in the centrosome? Curr Top Dev Biol 49:187–205PubMed CrossRef
    Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M (2012) Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr Biol 22:915–921PubMed CrossRef
    Matsuyama M, Goto H, Kasahara K, Kawakami Y, Nakanishi M, Kiyono T, Goshima N, Inagaki M (2011) Nuclear Chk1 prevents premature mitotic entry. J Cell Sci 124:2113–2119PubMed CrossRef
    Matsuzawa A, Kanno S, Nakayama M, Mochiduki H, Wei L, Shimaoka T, Furukawa Y, Kato K, Shibata S, Yasui A, Ishioka C, Chiba N (2014) The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol Cell 53:101–114PubMed CrossRef
    Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA (2000) The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J Cell Biol 151:837–846PubMed PubMedCentral CrossRef
    Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14:1159–1168PubMed PubMedCentral CrossRef
    Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J 21:483–492PubMed PubMedCentral CrossRef
    Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9:160–170PubMed CrossRef
    Moritz M, Braunfeld MB, Guenebaut V, Heuser J, Agard DA (2000) Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370PubMed CrossRef
    Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635–1646PubMed CrossRef
    Nakamura A, Arai H, Fujita N (2009) Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 187:607–614PubMed PubMedCentral CrossRef
    Nam HJ, van Deursen JM (2014) Cyclin B2 and p53 control proper timing of centrosome separation. Nat Cell Biol 16:538–549PubMed PubMedCentral CrossRef
    Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27:2572–2581PubMed PubMedCentral CrossRef
    Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25:5664–5674PubMed PubMedCentral CrossRef
    Okada S, Ouchi T (2003) Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem 278:2015–2020PubMed CrossRef
    Oliveira RA, Nasmyth K (2013) Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr Biol 23:R601–R603PubMed CrossRef
    Oricchio E, Saladino C, Iacovelli S, Soddu S, Cundari E (2006) ATM is activated by default in mitosis, localizes at centrosomes and monitors mitotic spindle integrity. Cell Cycle 5:88–92PubMed CrossRef
    Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T (2012) Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 47:694–706PubMed CrossRef
    Pagan JK, Marzio A, Jones MJ, Saraf A, Jallepalli PV, Florens L, Washburn MP, Pagano M (2015) Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol 17:31–43PubMed PubMedCentral CrossRef
    Paintrand M, Moudjou M, Delacroix H, Bornens M (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108:107–128PubMed CrossRef
    Palazzo RE, Vogel JM, Schnackenberg BJ, Hull DR, Wu X (2000) Centrosome maturation. Curr Top Dev Biol 49:449–470PubMed CrossRef
    Pan YR, Lee EY (2009) UV-dependent interaction between Cep164 and XPA mediates localization of Cep164 at sites of DNA damage and UV sensitivity. Cell Cycle 8:655–664PubMed CrossRef
    Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109(Pt 13):3089–3102PubMed
    Piane M, Della Monica M, Piatelli G, Lulli P, Lonardo F, Chessa L, Scarano G (2009) Majewski osteodysplastic primordial dwarfism type II (MOPD II) syndrome previously diagnosed as Seckel syndrome: report of a novel mutation of the PCNT gene. Am J Med Genet A 149A:2452–2456PubMed CrossRef
    Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behaviour in vertebrate cells. J Cell Biol 149:317–330PubMed PubMedCentral CrossRef
    Prosser SL, Morrison CG (2015) Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol 208:693–701PubMed PubMedCentral CrossRef
    Prosser SL, Straatman KR, Fry AM (2009) Molecular dissection of the centrosome overduplication pathway in S-phase-arrested cells. Mol Cell Biol 29:1760–1773PubMed PubMedCentral CrossRef
    Prosser SL, Samant MD, Baxter JE, Morrison CG, Fry AM (2012) Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. J Cell Sci 125:5353–5368PubMed PubMedCentral CrossRef
    Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Galova M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61PubMed CrossRef
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412PubMed CrossRef
    Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184:225–239PubMed PubMedCentral CrossRef
    Saladino C, Bourke E, Conroy PC, Morrison CG (2009) Centriole separation in DNA damage-induced centrosome amplification. Environ Mol Mutagen 50:725–732PubMed CrossRef
    Saladino C, Bourke E, Morrison CG (2012) Centrosomes, DNA damage and aneuploidy. In: Schatten H (ed) The centrosome: cell and molecular mechanisms of functions and dysfunctions in disease, 13. Humana Press, New York, pp 223–243CrossRef
    Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501PubMed CrossRef
    Sankaran S, Starita LM, Groen AC, Ko MJ, Parvin JD (2005) Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol Cell Biol 25:8656–8668PubMed PubMedCentral CrossRef
    Sato N, Mizumoto K, Nakamura M, Tanaka M (2000) Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res 255:321–326PubMed CrossRef
    Savage KI, Harkin DP (2015) BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J 282:630–646PubMed CrossRef
    Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G (2012) Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 199:1083–1101PubMed PubMedCentral CrossRef
    Schockel L, Mockel M, Mayer B, Boos D, Stemmann O (2011) Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol 13:966–972PubMed CrossRef
    Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528PubMed CrossRef
    Shukla A, Kong D, Sharma M, Magidson V, Loncarek J (2015) Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun 6:8077PubMed PubMedCentral CrossRef
    Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2:90–95PubMed CrossRef
    Sir JH, Putz M, Daly O, Morrison CG, Dunning M, Kilmartin JV, Gergely F (2013) Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J Cell Biol 203:747–756PubMed PubMedCentral CrossRef
    Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EY (2008) Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 22:587–600PubMed PubMedCentral CrossRef
    Slaats GG, Ghosh AK, Falke LL, Le Corre S, Shaltiel IA, van de Hoek G, Klasson TD, Stokman MF, Logister I, Verhaar MC, Goldschmeding R, Nguyen TQ, Drummond IA, Hildebrandt F, Giles RH (2014) Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. PLoS Genet 10, e1004594PubMed PubMedCentral CrossRef
    Smith S, de Lange T (1999) Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 112:3649–3656PubMed
    Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2:672–676PubMed CrossRef
    Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976PubMed PubMedCentral CrossRef
    Sorino C, Bruno T, Desantis A, Di Certo MG, Iezzi S, De Nicola F, Catena V, Floridi A, Chessa L, Passananti C, Cundari E, Fanciulli M (2013) Centrosomal Che-1 protein is involved in the regulation of mitosis and DNA damage response by mediating pericentrin (PCNT)-dependent Chk1 protein localization. J Biol Chem 288:23348–23357PubMed PubMedCentral CrossRef
    Staples CJ, Myers KN, Beveridge RD, Patil AA, Lee AJ, Swanton C, Howell M, Boulton SJ, Collis SJ (2012) The centriolar satellite protein Cep131 is important for genome stability. J Cell Sci 125:4770–4779PubMed CrossRef
    Staples CJ, Myers KN, Beveridge RD, Patil AA, Howard AE, Barone G, Lee AJ, Swanton C, Howell M, Maslen S, Skehel JM, Boulton SJ, Collis SJ (2014) Ccdc13 is a novel human centriolar satellite protein required for ciliogenesis and genome stability. J Cell Sci 127:2910–2919PubMed CrossRef
    Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 24:8457–8466PubMed PubMedCentral CrossRef
    Stevens NR, Roque H, Raff JW (2010) DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement. Dev Cell 19:913–919PubMed PubMedCentral CrossRef
    Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2:223–232PubMed CrossRef
    Sugihara E, Kanai M, Saito S, Nitta T, Toyoshima H, Nakayama K, Nakayama KI, Fukasawa K, Schwab M, Saya H, Miwa M (2006) Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res 66:4020–4029PubMed CrossRef
    Suzuki K, Morimoto M, Yamauchi M, Yoshida H, Kodama S, Tsukamoto K, Watanabe M (2006) Non-specific detection of the centrosomes by antibodies recognizing phosphorylated ATM at serine 1981. Cell Cycle 5:1008–1009, author reply 1010PubMed CrossRef
    Takada S, Kelkar A, Theurkauf WE (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113:87–99PubMed CrossRef
    Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806PubMed CrossRef
    Tarapore P, Fukasawa K (2002) Loss of p53 and centrosome hyperamplification. Oncogene 21:6234–6240PubMed CrossRef
    Tarapore P, Horn HF, Tokuyama Y, Fukasawa K (2001) Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20:3173–3184PubMed CrossRef
    Tarapore P, Hanashiro K, Fukasawa K (2012) Analysis of centrosome localization of BRCA1 and its activity in suppressing centrosomal aster formation. Cell Cycle 11:2931–2946PubMed PubMedCentral CrossRef
    Thein KH, Kleylein-Sohn J, Nigg EA, Gruneberg U (2007) Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J Cell Biol 178:345–354PubMed PubMedCentral CrossRef
    Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Kramer A (2009) Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 185:1149–1157PubMed PubMedCentral CrossRef
    Tollenaere MA, Mailand N, Bekker-Jensen S (2015) Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci 72:11–23PubMed CrossRef
    Tritarelli A, Oricchio E, Ciciarello M, Mangiacasale R, Palena A, Lavia P, Soddu S, Cundari E (2004) p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 15 phosphorylation. Mol Biol Cell 15:3751–3757PubMed PubMedCentral CrossRef
    Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951PubMed CrossRef
    Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17:344–354PubMed PubMedCentral CrossRef
    Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278:8468–8475PubMed CrossRef
    Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A, Sluder G (2007) Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176:173–182PubMed PubMedCentral CrossRef
    Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N (2004) Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J 23:3386–3396PubMed PubMedCentral CrossRef
    van Vugt MA, Smits VA, Klompmaker R, Medema RH (2001) Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276:41656–41660PubMed CrossRef
    Villumsen BH, Danielsen JR, Povlsen L, Sylvestersen KB, Merdes A, Beli P, Yang YG, Choudhary C, Nielsen ML, Mailand N, Bekker-Jensen S (2013) A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO J 32:3029–3040PubMed PubMedCentral CrossRef
    Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93:938–949PubMed CrossRef
    Wang X, Yang Y, Duan Q, Jiang N, Huang Y, Darzynkiewicz Z, Dai W (2008) sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by PIk1. Dev Cell 14:331–341PubMed PubMedCentral CrossRef
    Wang WJ, Soni RK, Uryu K, Tsou MF (2011) The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J Cell Biol 193:727–739PubMed PubMedCentral CrossRef
    Wang CY, Huang EY, Huang SC, Chung BC (2015) DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene 34:1263–1269PubMed CrossRef
    Wiese C, Zheng Y (2000) A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol 2:358–364PubMed CrossRef
    Wilsker D, Petermann E, Helleday T, Bunz F (2008) Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci U S A 105:20752–20757PubMed PubMedCentral CrossRef
    Wong RW, Blobel G (2008) Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc Natl Acad Sci U S A 105:15441–15445PubMed PubMedCentral CrossRef
    Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K (2015) Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–1160PubMed CrossRef
    Woodruff JB, Wueseke O, Hyman AA (2014) Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 369:20130459PubMed PubMedCentral CrossRef
    Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD, Bunkenborg J, Widlund PO, Pozniakovsky A, Zanin E, Bahmanyar S, Zinke A, Hong SH, Decker M, Baumeister W, Andersen JS, Oegema K, Hyman AA (2015) Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348:808–812PubMed CrossRef
    Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395PubMed CrossRef
    Yang J, Adamian M, Li T (2006) Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17:1033–1040PubMed PubMedCentral CrossRef
    Zhang W, Fletcher L, Muschel RJ (2005) The role of Polo-like kinase 1 in the inhibition of centrosome separation after ionizing radiation. J Biol Chem 280:42994–42999PubMed CrossRef
    Zhang S, Hemmerich P, Grosse F (2007) Centrosomal localization of DNA damage checkpoint proteins. J Cell Biochem 101:451–465PubMed CrossRef
    Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378:578–583PubMed CrossRef
  • 作者单位:Lisa I. Mullee (1)
    Ciaran G. Morrison (1)

    1. Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Human Genetics
    Animal Genetics and Genomics
    Plant Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6849
文摘
Here, we review how DNA damage affects the centrosome and how centrosomes communicate with the DNA damage response (DDR) apparatus. We discuss how several proteins of the DDR are found at centrosomes, including the ATM, ATR, CHK1 and CHK2 kinases, the BRCA1 ubiquitin ligase complex and several members of the poly(ADP-ribose) polymerase family. Stereotypical centrosome organisation, in which two centriole barrels are orthogonally arranged in a roughly toroidal pericentriolar material (PCM), is strongly affected by exposure to DNA-damaging agents. We describe the genetic dependencies and mechanisms for how the centrioles lose their close association, and the PCM both expands and distorts after DNA damage. Another consequence of genotoxic stress is that centrosomes undergo duplication outside the normal cell cycle stage, meaning that centrosome amplification is commonly seen after DNA damage. We discuss several potential mechanisms for how centrosome numbers become dysregulated after DNA damage and explore the links between the DDR and the PLK1- and separase-dependent mechanisms that drive centriole separation and reduplication. We also describe how centrosome components, such as centrin2, are directly involved in responding to DNA damage. This review outlines current questions on the involvement of centrosomes in the DDR. Keywords Centriole Centrosome PCM Checkpoint Cancer ATM CHK1 PLK1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700