x)K0.5Na0.5NbO3-.04LiTaO3xNaSbO3xNS, x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08) lead-free piezoelectric ceramics were fabricated by conventional ceramic technique. The crystal structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The Curie temperature (T C) and the polymorphic phase transition temperature (T O?T) of the ceramics decreased gradually with the increase of NaSbO3x?≤?.08. The ceramic with a composition of x?=?0.06, which was close to the orthorhombic side of the polymorphic phase transition (PPT) region, exhibited excellent electrical properties with piezoelectric coefficient d 33?=?233 pC/N, planar electromechanical coupling coefficient k p?=?0.328, remnant polarization P r?=?14.7?μC/cm2, coercive field E c ?=?11.7?kV/cm, relative permittivity $ \varepsilon_{33}^{\text{T}} /\varepsilon_{0} $ ?=?1,033, and loss tangent tan δ?=?0.063. The ceramics had relatively low Q m value in the range of 10-7." />
Effects of NaSbO3 on phase structure and electrical properties of K0.5Na0.5NbO3–LiTaO3–NaSbO
详细信息    查看全文
  • 作者:Haiwei Du (1) (2)
    Yanqiu Huang (1) (2)
    Huilin Li (1) (2)
    Hongping Tang (1) (2)
    Wei Feng (1) (2)
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:24
  • 期:3
  • 页码:855-860
  • 全文大小:826KB
  • 参考文献:1. L. Egerton, D.M. Dillom, J. Am. Ceram. Soc. 42, 438 (1959) CrossRef
    2. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006) CrossRef
    3. Y.L. Wang, D. Damjanovic, N. Klein, N. Setter, J. Am. Ceram. Soc. 91, 1962 (2008) CrossRef
    4. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Solid State Commun. 141, 675 (2007) CrossRef
    5. Y.P. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004) CrossRef
    6. J.T. Zeng, L.Y. Zheng, G.R. Li, Z.Z. Cao, K.Y. Zhao, Q.R. Yin, E.D. Politova, J. Alloys Compd. 509, 5858 (2011) CrossRef
    7. R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007) CrossRef
    8. Y.Y. Wang, Q.B. Liu, J.G. Wu, D.Q. Xiao, J.G. Zhu, J. Am. Ceram. Soc. 92, 755 (2009) CrossRef
    9. R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong, Y.P. Wong, J. Eur. Ceram. Soc. 27, 4453 (2007) CrossRef
    10. R.Z. Zuo, C. Ye, X.S. Fang, J. Phys. Chem. Solids 69, 230 (2008) CrossRef
    11. D.M. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 101, 07411 (2007)
    12. E.K. Akdo?an, K. Kerman, M. Abazari, A. Safari, Appl. Phys. Lett. 92, 112908 (2008) CrossRef
    13. R.Z. Zuo, J. Fu, D.Y. Lv, J. Am. Ceram. Soc. 92, 283 (2009) CrossRef
    14. Y. Saito, H. Takao, Ferroelectrics 338, 17 (2006) CrossRef
    15. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004) CrossRef
    16. D.M. Lin, K.W. Kwok, Int. J. Appl. Ceram. Technol. 8, 684 (2011) CrossRef
    17. Y.F. Chang, Z.P. Yang, D.F. Ma, Z.H. Liu, Z.L. Wang, J. Appl. Phys. 105, 054101 (2009) CrossRef
    18. Q. Zhang, B.P. Zhang, H.T. Li, P.P. Shang, J. Alloys Compd. 490, 260 (2010) CrossRef
    19. H.E. Mgbemere, R.P. Herber, G.A. Schneider, J. Eur. Ceram. Soc. 29, 3273 (2009) CrossRef
    20. Z.Y. Shen, Y.H. Zhen, K. Wang, J.F. Li, J. Am. Ceram. Soc. 92, 1748 (2009) CrossRef
    21. D.M. Lin, K.W. Kwok, H.Y. Tian, H.W.L. Chan, J. Am. Ceram. Soc. 90, 1458 (2007) CrossRef
    22. I.H. Chan, C.T. Sun, M.P. Houng, S.Y. Chu, Ceram. Int. 37, 2061 (2011) CrossRef
    23. J. R?del, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009) CrossRef
    24. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006) CrossRef
    25. L.M. Zheng, J.F. Wang, Q.Z. Wu, G.Z. Zang, C.M. Wang, J. Du, J. Alloys Compd. 487, 231 (2009) CrossRef
    26. J. Fu, R.Z. Zuo, X.H. Wang, L.T. Li, J. Phys. D Appl. Phys. 42, 012006 (2009) CrossRef
    27. Z.Y. Shen, Y.M. Li, L. Jiang, R.R. Li, Z.M. Wang, Y. Hong, R.H. Liao, J. Mater. Sci. Mater. Electron. 22, 1071 (2011) CrossRef
    28. H.E. Mgbemere, G.A. Schneider, T.A. Stegk, Funct. Mater. Lett. 3, 25 (2010) CrossRef
    29. H. Takahashi, Electron. Commun. Jpn. 95, 20 (2012)
  • 作者单位:Haiwei Du (1) (2)
    Yanqiu Huang (1) (2)
    Huilin Li (1) (2)
    Hongping Tang (1) (2)
    Wei Feng (1) (2)

    1. Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
    2. Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People’s Republic of China
  • ISSN:1573-482X
文摘
The (0.96-em class="a-plus-plus">x)K0.5Na0.5NbO3-.04LiTaO3-em class="a-plus-plus">xNaSbO3 (abbreviated as KNN–LT-em class="a-plus-plus">xNS, x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08) lead-free piezoelectric ceramics were fabricated by conventional ceramic technique. The crystal structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The Curie temperature (T C) and the polymorphic phase transition temperature (T O?T) of the ceramics decreased gradually with the increase of NaSbO3. In addition, a coexistence of orthorhombic and tetragonal phases in the ceramics was identified in the composition range of 0.05?≤?em class="a-plus-plus">x?≤?.08. The ceramic with a composition of x?=?0.06, which was close to the orthorhombic side of the polymorphic phase transition (PPT) region, exhibited excellent electrical properties with piezoelectric coefficient d 33?=?233 pC/N, planar electromechanical coupling coefficient k p?=?0.328, remnant polarization P r?=?14.7?μC/cm2, coercive field E c ?=?11.7?kV/cm, relative permittivity $ \varepsilon_{33}^{\text{T}} /\varepsilon_{0} $ ?=?1,033, and loss tangent tan δ?=?0.063. The ceramics had relatively low Q m value in the range of 10-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700