Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum
详细信息    查看全文
  • 作者:Yuxiang Fan ; Mengjiang Zhao ; Liujing Wei
  • 关键词:Actinosynnema pretiosum ; Ansamitocins ; UDPG synthetic pathway ; Metabolic engineering
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:100
  • 期:6
  • 页码:2651-2662
  • 全文大小:634 KB
  • 参考文献:Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, Al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P (2014) FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 20(17):4436–4441CrossRef PubMed
    Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67(2):213–225PubMedCentral CrossRef PubMed
    Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283(37):25186–25199CrossRef PubMed
    Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull 52(1):1–26CrossRef PubMed
    Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114PubMedCentral CrossRef PubMed
    Fan Y, Gao Y, Zhou J, Wei L, Chen J, Hua Q (2014) Process optimization with alternative carbon sources and modulation of secondary metabolism for enhanced ansamitocin P-3 production in Actinosynnema pretiosum. J Biotechnol 192:1–10CrossRef PubMed
    Floss HG (2006) From ergot to ansamycins—45 years in biosynthesis. J Nat Prod 69(1):158–169CrossRef PubMed
    Gao Y, Fan Y, Nambou K, Wei L, Liu Z, Imanaka T, Hua Q (2014) Enhancement of ansamitocin P-3 production in Actinosynnema pretiosum by a synergistic effect of glycerol and glucose. J Ind Microbiol Biotechnol 41(1):143–152CrossRef PubMed
    Hasan MR, Rahman M, Jaques S, Purwantini E, Daniels L (2010) Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 285(25):19135–19144PubMedCentral CrossRef PubMed
    Hatano K, Akiyama SI, Asai M, Rickards RW (1982) Biosynthetic origin of aminobenzenoid nucleus (C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics. J Antibiot 35(10):1415–1417CrossRef PubMed
    He Y, Wang Z, Bai L, Liang J, Zhou X, Deng Z (2010) Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces. J Microbiol Biotechnol 20(4):678–682CrossRef PubMed
    Jia Y, Zhong JJ (2011) Enhanced production of ansamitocin P-3 by addition of Mg2+ in fermentation of Actinosynnema pretiosum. Bioresour Technol 102(21):10147–10150CrossRef PubMed
    Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 29(2):243–263CrossRef PubMed
    Kieser HM, Kieser T, Hopwood DA (1992) A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174(17):5496–5507PubMedCentral PubMed
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich
    Land M, Lapidus A, Mayilraj S, Chen F, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng J (2009) Complete genome sequence of Actinosynnema mirum type strain (101T). Stand Genomic Sci 1(1):46PubMedCentral CrossRef PubMed
    Li T, Fan Y, Nambou K, Hu F, Imanaka T, Wei L, Hua Q (2015) Improvement of ansamitocin P-3 production by Actinosynnema mirum with fructose as the sole carbon source. Appl Biochem Biotechnol 175(6):2845–2856CrossRef PubMed
    Liu C, Tadayoni BM, Bourret LA, Mattocks KM, Derr SM, Widdison WC, Kedersha NL, Ariniello PD, Goldmacher VS, Lambert JM, Blattler WA, Chari RV (1996) Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A 93(16):8618–8623PubMedCentral CrossRef PubMed
    Matsuoka Y, Shimizu K (2015) Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresour Bioprocess 2:4CrossRef
    Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10(5):281–292CrossRef PubMed
    Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11:50PubMedCentral CrossRef PubMed
    Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236PubMedCentral CrossRef PubMed
    Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2007) Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 9(3):293–303PubMedCentral CrossRef PubMed
    Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24(6):1262–1287CrossRef PubMed
    Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72(11):7132–7139PubMedCentral CrossRef PubMed
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York
    Spiteller P, Bai LQ, Shang GD, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125(47):14236–14237CrossRef PubMed
    Wenzel SC, Williamson RM, Grunanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Muller R, Floss HG (2006) On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc 128(44):14325–14336CrossRef PubMed
    Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4(4):417–426PubMed
    Yu T, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh K, Xu J, Moss S, Leistner E, Floss H (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99(12):7968–7973PubMedCentral CrossRef PubMed
    Zabala D, Brana AF, Florez AB, Salas JA, Mendez C (2013) Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20C:187–197CrossRef
    Zhao C, Nambou K, Wei LJ, Chen J, Imanaka T, Hua Q (2014) Evaluation of metabolome sample preparation methods regarding leakage reduction for the oleaginous yeast Yarrowia lipolytica. Biochem Eng J 82:63–70CrossRef
  • 作者单位:Yuxiang Fan (1)
    Mengjiang Zhao (1)
    Liujing Wei (1)
    Fengxian Hu (1)
    Tadayuki Imanaka (1)
    Linquan Bai (2)
    Qiang Hua (1) (3)

    1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
    2. State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
    3. Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), 130 Meilong Road, Shanghai, 200237, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Ansamitocin P-3 (AP-3), an amacrocyclic lactam compound, is produced by Actinosynnema pretiosum. As a group of maytansinoid antibiotics, ansamitocins have an extraordinary antitumor activity by blocking the assembly of tubulin forming into functional microtubules. The biosynthesis of ansamitocins is initialized by the formation of UDP-glucose (UDPG) which is converted from glucose-1-phosphate (G1P). In this study, we focused on the influence of enhancement of UDPG biosynthesis on the production of ansamitocins in A. pretiosum. The homologous overexpressions of phosphoglucomutase, starch phosphorylase, and UTP-G1P uridylyltransferase, respectively, could largely increase the pool sizes of G1P and UDPG and result in improved AP-3 production. The elevated intracellular glucose-6-phosphate (G6P) level provided by the enhanced glyconeogenesis had, however, no significant effects on the biosynthesis of AP-3. The G6P-G1P-UDPG pathway was therefore systematically engineered by multiple genetic modifications, and a significant increase in AP-3 production was achieved (168 mg/L of AP-3 in flask culture, 40 % higher than the control strain). We also found that the enhancement of starch assimilation pathway could also improve the assembly of AP-3 to some extent. In addition, heterologous gene overexpression from Actinosynnema mirum could result in more AP-3 biosynthesis in comparison to the corresponding homologous overexpression, suggesting an alternative and promising avenue of metabolic engineering strategy for improving AP-3 production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700