MiR-132 Inhibits Expression of SIRT1 and Induces Pro-inflammatory Processes of Vascular Endothelial Inflammation through Blockade of the SREBP-1c Metabolic Pathway
详细信息    查看全文
  • 作者:Liwei Zhang (1)
    Dangsheng Huang (1)
    Qiushuang Wang (1)
    Dong Shen (1)
    Yumei Wang (1)
    Bingyang Chen (1)
    Jinqian Zhang (2)
    Luyue Gai (3)
  • 关键词:MicroRNA ; SIRT1 ; Inflammation ; SREBP ; 1c ; Lipid metabolism ; Atherosclerosis
  • 刊名:Cardiovascular Drugs and Therapy
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:4
  • 页码:303-311
  • 全文大小:919 KB
  • 参考文献:1. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164-3. CrossRef
    2. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59-8. CrossRef
    3. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516-1. CrossRef
    4. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272-4. CrossRef
    5. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261-1. CrossRef
    6. Wang S, Aurora AB, Johnson BA, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS. 2005;102:16426-1. CrossRef
    7. Wayman GA, Davare M, Ando H, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. PNAS. 2008;105:9093-. CrossRef
    8. Cheng HY, Papp JW, Varlamova O, et al. MicroRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813-9. CrossRef
    9. Nudelman AS, DiRocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20:492-.
    10. Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876-4. CrossRef
    11. Haigis MC, Guarente LP. Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20:2913-1. CrossRef
    12. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126:257-8. CrossRef
    13. Chen ML, Yi L, Jin X, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 2013; 9. [Epub ahead of print]
    14. Ma L, Liu X, Zhao Y, Chen B, Li X, Qi R. Ginkgolide B reduces LOX-1 expression by inhibiting Akt phosphorylation and increasing Sirt1Expression in oxidized LDL-stimulated human umbilical vein endothelial cells. PLoS One. 2013;8:e74769. CrossRef
    15. Ponugoti B, Kim DH, Xiao Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285:33959-0. CrossRef
    16. Chen CY, Yi L, Jin X, et al. Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Chem Biol Interact. 2010;183:105-2. CrossRef
    17. Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E. Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J. 2006;400:179-8. CrossRef
    18. Rome S, Lecomte V, Meugnier E, et al. Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics. 2008;34:327-7. CrossRef
    19. Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol. 2011;22:86-2. CrossRef
    20. Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 2006;4:9-2. CrossRef
    21. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13:213-4.
    22. Cozzone D, Debard C, Dif N, et al. Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia. 2006;49:990-. CrossRef
    23. Ivashchenko CY, Bradley BT, Ao ZH, Leiper J, Vallance P, Johns DG. Regulation of the ADMA-DDAH system in endothelial cells: a novel mechanism for the sterol response element binding proteins, SREBP1c and ?. Am J Physiol Heart Circ Physiol. 2010;298:H251-.
    24. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet. 1997;349:1436-2. CrossRef
    25. Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation: a focus on cardiovascular disease. Arterioscler Thromb Vasc Biol. 2011;31:1001-. CrossRef
    26. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045-1. CrossRef
    27. Liu Y, Davidson BP, Yue Q, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging. 2013;6:74-2. CrossRef
    28. Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep. 2013;15:324. CrossRef
    29. Qui?ones M, Miguel M, Aleixandre A. The polyphenols, naturally occurring compounds with beneficial effects on cardiovascular disease. Nutr Hosp. 2012;27:76-9.
    30. Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80:191-. CrossRef
    31. Lee J, Kemper JK. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging. 2010;2:527-4.
    32. Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell. 2005;120:473-2. CrossRef
    33. Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA. 2007;297:986-4. CrossRef
    34. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004;101:6659-3. CrossRef
  • 作者单位:Liwei Zhang (1)
    Dangsheng Huang (1)
    Qiushuang Wang (1)
    Dong Shen (1)
    Yumei Wang (1)
    Bingyang Chen (1)
    Jinqian Zhang (2)
    Luyue Gai (3)

    1. Department of Cardiology, The first Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
    2. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
    3. Department of Cardiology, Division of Medicine, Chinese PLA General Hospital, Beijing, 100853, China
  • ISSN:1573-7241
文摘
Purpose Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with pro-inflammatory processes and inflammatory changes in the endothelium, related to lipid metabolism. MicroRNA (miRNA) inhibition of inflammation related to SIRT1 has been shown to be a promising therapeutic approach for AS. However, the mechanism of action is unknown. Methods We investigated whether miRNAs regulate the SIRT1 and its downstream SREBP-lipogenesis-cholesterogenesis metabolic pathway in human umbilical vein endothelial cells (HUVECs). HUVECs were transfected with miR-132 mimics and inhibitors, and then treated with or without tumor necrosis factor α (TNFα). The effects of miR-132 on pro-inflammatory processes, proliferation and apoptosis were assessed. Results We identified that the relative 3-UTR luciferase activities of SIRT1 were significantly decreased in miR-132 transfected HUVECs (0.338?±-.036) compared to control (P--.000). miR-132 inhibited SIRT1 expression of mRNA level in HUVECs (0.53?±-.06) (P--.01) as well as proteins of SIRT1. mRNA expression and protein levels of SREBP (0.45?±-.07), fatty acid synthase (FASN) (0.55?±-.09) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) (0.62?±-.08) (P--.01), which are downstream regulated genes, were reduced in HUVECs by miR-132. MiR-132 promoted pro-inflammatory processes and apoptosis of HUVECs induced by TNF-α, and inhibited its proliferation, viability and migration. Conclusions SIRT1 mRNAs are direct targets of miR-132. miR-132 controls lipogenesis and cholesterogenesis in HUVECs by inhibiting SIRT1 and SREBP-1c expression and their downstream regulated genes, including FASN and HMGCR. Inhibition of SIRT1 by miR-132 was associated with lipid metabolism-dependent pro-inflammatory processes in HUVECs. The newly identified miRNA, miR-132 represents a novel targeting mechanism for AS therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700