Phase-field modeling of epitaxial growth with the Ehrlich-Schwoebel barrier: Model validation and application
详细信息    查看全文
  • 作者:XiangLei Dong (1)
    Hui Xing (1)
    Sha Sha (1)
    ChangLe Chen (1)
    LiWei Niu (1)
    JianYuan Wang (1)
    KeXin Jin (1)

    1. Shaanxi Key Laboratory for Condensed Matter Structure and Properties
    ; Department of Applied Physics ; Northwestern Polytechnical University ; Xi鈥檃n ; 710129 ; China
  • 关键词:epitaxial growth ; phase ; field method ; Ehrlich ; Schwoebel barrier ; kinetics ; interfacial
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:753-762
  • 全文大小:1,961 KB
  • 参考文献:1. Cho, A Y, Arthur, J R (1975) Molecular beam epitaxy. Prog Solid State Chem 10: pp. 157-191 CrossRef
    2. Herman, M A, Sitter, H (2012) Molecular Beam Epitaxy: Fundamentals and Current Status. Springer-Verlag Press, Berlin
    3. Panish, M B (1980) Molecular beam epitaxy. Science 208: pp. 916-922 CrossRef
    4. Springholz, G, Ueta, A Y, Frank, N (1996) Spiral growth and threading dislocations for molecular beam epitaxy of PbTe on BaF2 (111) studied by scanning tunneling microscopy. Appl Phys Lett 69: pp. 2822-2824 CrossRef
    5. Chen, S, Merriman, B, Kang, M (2001) A level set method for thin film epitaxial growth. Physics 167: pp. 475-500
    6. Amar, J G, Family, F (1995) Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth. Phys Rev Lett 74: pp. 2066-2069 CrossRef
    7. Nurminen, L, Kuronen, A, Kaski, K (2000) Kinetic Monte Carlo simulation of nucleation on patterned substrates. Phys Rev B 63: pp. 035407-1-7 CrossRef
    8. Wang, L G, Clancy, P (2001) Kinetic Monte Carlo simulation of Cu thin film growth. Surf Sci 473: pp. 25-38 CrossRef
    9. Voronkov, V V (1970) The movement of an elementary step by means of the formation of one-dimensional nuclei. Phys Cryst 15: pp. 8-13
    10. Lam, C H, Lee, C K, Sander, L M (2002) Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study. Phys Rev Lett 89: pp. 216102-1-4 CrossRef
    11. Caflisch, R E, Weinan, E, Gyure, M F (1999) Kinetic model for a step edge in epitaxial growth. Phys Rev E 59: pp. 6879-6887 CrossRef
    12. Burton, W K, Cabrera, N, Frank, F C (1951) The growth of crystals and the equilibrium structure of their surfaces. Trans R Soc London Ser A 243: pp. 299-358 CrossRef
    13. Ratz, A, Voigt, A (2004) Phase-field model for island dynamics in epitaxial growth. Appl Anal 83: pp. 1015-1025 CrossRef
    14. Otto, F, Penzler, P, Ratz, A (2004) A diffuse-interface approximation for step flow in epitaxial growth. Nonlinearity 17: pp. 477-491 CrossRef
    15. Ehrlich, G, Hudda, F G, Chem, J (1966) Atomic view of surface selfdiffusion: Tungsten on Tungsten. Physics 44: pp. 1039-1049
    16. Schwoebel, R L (1969) Step motion on crystal surfaces. II. Appl Phys 40: pp. 614-618 CrossRef
    17. Liu, F, Metiu, H (1994) Stability and kinetics of step motion on crystal surfaces. Phys Rev E 49: pp. 2601-2615 CrossRef
    18. Pierre-Louis, O (2003) Phase field models for step flow. Phys Rev E 68: pp. 021604-1-19 CrossRef
    19. Karma, A, Plapp, M (1998) Spiral surface growth without desorption. Phys Rev Lett 81: pp. 4444-4447 CrossRef
    20. Redinger, A, Ricken, O, Kuhn, P (2008) Spiral growth and Step edge barriers. Phys Rev Lett 100: pp. 035506-1-4 CrossRef
    21. Ratsch, C, Venables, J A, Vac, J (2003) Nucleation theory and the early stages of thin film growth. Sci Technol A 21: pp. S96-S106
    22. Evans, J W, Thiel, P A, Bartelt, M C (2006) Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf Sci Rep 61: pp. 118-128 CrossRef
    23. Einax, M, Dieterich, W, Maass, P (2013) Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies. Rev Mod Phys 85: pp. 921-939 CrossRef
    24. Provatas, N, Elder, K (2010) Phase-Field Methods in Materials Science and Engineering. Wiley Press, Weinheim CrossRef
    25. Karma, A, Rappel, W J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57: pp. 4323-4349 CrossRef
    26. Yu, Y M, Liu, B G (2004) Phase-field model of island growth in epitaxy. Phys Rev E 69: pp. 021601-1-6
    27. Yu, Y M, Liu, B G (2004) Self-organized formation of regular nanostripes on vicinal surfaces. Phys Rev B 70: pp. 205414-1-7
    28. Yu, Y M, Liu, B G (2008) Contrasting morphologies of O-rich ZnO epitaxy on Zn- and O-polar thin film surfaces: Phase-field model. Phys Rev B 77: pp. 195327-1-6
    29. Yu, Y M, Liu, B G (2006) Coexistence of meandering and bunching of steps on vicinal surfaces. Phys Rev B 73: pp. 035416-1-5
    30. Hu, Z, Lowengrubb, J S, Wisec, S M (2012) Phase-field modeling of epitaxial growth: Applications to step trains and island dynamics. Physica D 241: pp. 77-94 CrossRef
    31. Michely, T, Krug, J (2004) Islands, Mounds and Atoms: Patterns and Processesin Crystal Growth Far from Equilibrium. Springer Press, Berlin
    32. Pierre-Louis, O, Danker, G, Chang, J (2005) Nonlinear dynamics of vicinal surfaces. Cryst Growth 275: pp. 56-64 CrossRef
    33. Misbah, C, Pierre-Louis, O, Saito, Y (2010) Crystal surfaces in and out of equilibrium: A modern view. Rev Mod Phys 82: pp. 981-1040 CrossRef
    34. Echebarria, B, Folch, R, Karma, A (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70: pp. 061604-1-22 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
In this paper, we introduce different forms of mobility into a quantitative phase-field model to produce arbitrary Ehrlich-Schwoebel (ES) effects. Convergence studies were carried out in the one-side step-flow model, which showed that the original mobility not only induces the ES effect, but also leads to larger numerical instability with increase of the step width. Thus, another modified form of the ES barrier is proposed, and is found to be more suitable for large-scale simulations. Model applications were performed on the wedding-cake structure, coarsening and coalescence of islands and spiral growth. The results show that the ES barrier exhibits more significant kinetic effects at the larger deposition rates by limiting motions of atoms on upper steps, leading to aggregation on the top layers, as well as the roughening of growing surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700