Lysobacter chengduensis sp. nov. Isolated from the Air of Captive Ailuropoda melanoleuca Enclosures in Chengdu, China
详细信息    查看全文
  • 作者:Caifang Wen ; Lixin Xi ; Rong She ; Shan Zhao ; Zhongxiang Hao ; Lu Luo…
  • 刊名:Current Microbiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:72
  • 期:1
  • 页码:88-93
  • 全文大小:420 KB
  • 参考文献:1.Aslam Z, Yasir M, Jeon CO et al (2009) Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59:675–680PubMed CrossRef
    2.Bae HS, Im WT, Lee ST (2005) Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 55:1155–1161PubMed CrossRef
    3.Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMed PubMedCentral
    4.O’Hara CM (2006) Evaluation of the Phoenix 100 ID/AST system and NID Panel for identification of enterobacteriaceae, vibrionaceae, and commonly isolated nonenteric gram-negative bacilli. J Clin Microbiol 44:928–933PubMed PubMedCentral CrossRef
    5.Choi JH, Seok JH, Cha JH et al (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197PubMed CrossRef
    6.Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393CrossRef
    7.Collins MD (1985) Isoprenoid quinone analysis in classification and identification. In: Minnikin MGDE (ed) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287
    8.Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRef
    9.Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMed CrossRef
    10.Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRef
    11.Fukuda W, Kimura T, Araki S et al (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318PubMed CrossRef
    12.Greisen K, Loeffelholz M, Purohit A et al (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32:335–351PubMed PubMedCentral
    13.Guindon S, Lethiec F, Duroux P et al (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–W559PubMed PubMedCentral CrossRef
    14.Islam MT, Hashidoko Y, Deora A et al (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796PubMed PubMedCentral CrossRef
    15.Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMed CrossRef
    16.Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRef
    17.Liu M, Liu Y, Wang Y et al (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437PubMed CrossRef
    18.Luo G, Shi Z, Wang G (2012) Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 62:1659–1665PubMed CrossRef
    19.Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Method Enzymol 12B:195–206CrossRef
    20.Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 2:233–241CrossRef
    21.Park JH, Kim R, Aslam Z et al (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392PubMed CrossRef
    22.Romanenko LA, Uchino M, Tanaka N et al (2008) Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58:370–374PubMed CrossRef
    23.Saddler GS, Bradbury JF (2005) Family I. Xanthomonadaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology (the proteobacteria), part B (the gammaproteobacteria), vol 2, 2nd edn. Springer, New York, p 63CrossRef
    24.Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
    25.Srinivasan S, Kim MK, Sathiyaraj G et al (2010) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547PubMed CrossRef
    26.Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMed
    27.Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMed PubMedCentral CrossRef
    28.Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMed PubMedCentral CrossRef
    29.Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRef
    30.Wang GL, Wang L, Chen HH et al (2011) Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol 61:674–679PubMed CrossRef
    31.Weon HY, Kim BY, Baek YK et al (2006) Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951PubMed CrossRef
    32.Ye XM, Chu CW, Shi C et al (2015) Lysobacter caeni sp. nov., isolated from the sludge of pesticide manufacturing factory. Int J Syst Evol Microbiol 65:845–850PubMed CrossRef
  • 作者单位:Caifang Wen (1)
    Lixin Xi (1)
    Rong She (1)
    Shan Zhao (1)
    Zhongxiang Hao (1)
    Lu Luo (1)
    Hong Liao (1)
    Zhenrong Chen (1)
    Guoquan Han (2)
    Sanjie Cao (1)
    Rui Wu (1)
    Qigui Yan (1)
    Rong Hou (3)

    1. College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
    2. College of Food Science, Sichuan Agricultural University, Yaan, China
    3. Chengdu Research Base of Giant Panda Breeding, Chengdu, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1432-0991
文摘
A novel bacterial strain, designated as CF21T, was isolated from the air of Ailuropoda melanoleuca enclosures in China. Cells were gram-negative, aerobic, non-motile, and rod shaped. Strain CF21T grew at 10–40 °C (optimum 28–30 °C) and pH 6.0–9.0 (optimum pH 7.0–8.0) and in the presence of NaCl concentrations ranging from 0.0 % (w/v) to 2.0  % (optimum 0.0–1.0 %). 16SrRNA gene sequence analysis indicated that strain CF21T belonged to genus Lysobacter within class Gammaproteobacteria and was most closely related to Luteimonas dalianensi OB44-3T (95.8 % similarity), Lysobacter ruishenii CTN-1T (95.1 %), Lysobacter spongiicola KMM329T (94.8 %), and Lysobacter daejeonensis GH1-9T (94.6 %). The genomic G+C DNA content was 68.72 mol%. Major cellular fatty acids of CF21T were iso-C16:0 (30.22 %), iso-C15:0 (25.70 %), and the sum of 10-methyl C16 : 0 and/or iso-C17 : 1ω9c (21.94 %). The prominent isoprenoid quinone was ubiquinone 8 (Q-8). Primary polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. DNA sequence relatedness between strain CF21T and L. ruishenii CTN-1T was 56 %, which was clearly below the 70 % threshold for prokaryotic species delineation. These analyses indicated that CF21T is a novel member of genus Lysobacter, for which the name Lysobacter chengduensis sp. nov. is proposed. The type strain is CF21T (=CGMCC1.15145T = DSM 100306T). Electronic supplementary materialThe online version of this article (doi:10.​1007/​s00284-015-0921-8) contains supplementary material, which is available to authorized users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700