Elevated CO2 influences microbial carbon and nitrogen cycling
详细信息    查看全文
  • 作者:Meiying Xu (10) (9)
    Zhili He (10)
    Ye Deng (10)
    Liyou Wu (10)
    Joy D van Nostrand (10)
    Sarah E Hobbie (11)
    Peter B Reich (12)
    Jizhong Zhou (10) (13) (14)
  • 刊名:BMC Microbiology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:510KB
  • 参考文献:1. IPCC: / Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis: Fourth Assessment Report of the Intergovernmental Panel on Climate. Change. Cambridge: Cambridge University Press; 2007.
    2. Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ, Xiaosu D: / Climate Change 2001: The Scientific Basis: Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2001:881.
    3. Luo Y, Hui D, Zhang D: Elevated CO 2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. / Ecology 2006,87(1):53鈥?3. CrossRef
    4. Heimann M, Reichstein M: Terrestrial ecosystem carbon dynamics and climate feedbacks. / Nature 2008,451(7176):289鈥?92. CrossRef
    5. Drigo B, Kowalchuk G, Van Veen J: Climate change goes underground: effects of elevated atmospheric CO 2 on microbial community structure and activities in the rhizosphere. / Biol Fertil Soils 2008,44(5):667鈥?79. CrossRef
    6. Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, / et al.: Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. / Nature 2001,410(6830):809鈥?12. CrossRef
    7. Ainsworth EA, Long SP: What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . / New Phytol 2005, 165:351鈥?72. CrossRef
    8. Zak DR, Pregitzer KS, King JS, Holmes WE: Elevated atmospheric CO 2 , fine roots and the response of soil microorganisms: a review and hypothesis. / New Phytol 2000,147(1):201鈥?22. CrossRef
    9. Souza L, Belote RT, Kardol P, Weltzin JF, Norby RJ: CO 2 enrichment accelerates successional development of an understory plant community. / Journal of Plant Ecology-Uk 2010,3(1):33鈥?9. CrossRef
    10. Balser TC, Firestone MK: Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. / Biogeochemistry 2005,73(2):395鈥?15. CrossRef
    11. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D: Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen. / Environ Microbiol 2008,10(4):926鈥?41. CrossRef
    12. Finzi AC, Sinsabaugh RL, Long TM, Osgood MP: Micorbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. / Ecosystems 2006, 9:215鈥?26. CrossRef
    13. Chung H, Zak DR, Reich PB, Ellsworth DS: Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function. / Glob Chang Biol 2007, 13:980鈥?89. CrossRef
    14. Jossi M, Fromin N, Tarnawski S, Kohler F, Gillet F, Aragno M, Hamelin J: How elevated CO 2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. / FEMS Microbiol Ecol 2006, 55:339鈥?50. CrossRef
    15. Carney MC, Hungate BA, Drake BG, Megonigal JP: Altered soil microbial community at elevated CO 2 leads to loss of soil carbon. / Proc Natl Acad Sci USA 2007,104(12):4990鈥?995. CrossRef
    16. Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT: Assessment of 10 years of CO 2 fumigation on soil microbial communities and function in a sweetgum plantation. / Soil Biol Biochem 2009,41(3):514鈥?20. CrossRef
    17. Jin VL, Evans RD: Elevated CO 2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. / Glob Chang Biol 2007,13(2):452鈥?65. CrossRef
    18. He Z, Deng Y, Zhou J: Development of functional gene microarrays for microbial community analysis. / Curr Opin Biotechnol 2012,23(1):49鈥?5. CrossRef
    19. He Z, Van Nostrand JD, Zhou J: Applications of functional gene microarrays for profiling microbial communities. / Curr Opin Biotechnol 2012,23(3):460鈥?66. CrossRef
    20. Ramette A, Tiedje JM: Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. / Proc Natl Acad Sci 2007,104(8):2761鈥?766. CrossRef
    21. Zhou J, Kang S, Schadt CW, Garten CT Jr: Spatial scaling of functional gene diversity across various microbial taxa. / Proc Natl Acad Sci USA 2008,105(22):7768鈥?773. CrossRef
    22. Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand JD, Deng Y, He Z, / et al.: GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. / Proc Natl Acad Sci USA 2009,106(12):4840鈥?845. CrossRef
    23. Xu M, Wu W-M, Wu L, He Z, Van Nostrand JD, Deng Y, Luo J, Carley J, Ginder-Vogel M, Gentry TJ, / et al.: Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. / ISME J 2010,4(8):1060鈥?070. CrossRef
    24. Naeem S, Duffy JE, Zavaleta E: The functions of biological diversity in an age of extinction. / Science 2012,336(6087):1401鈥?406. CrossRef
    25. Adair EC, Peter BR, Sarah EH, Johannes MHK: Interactive effects of time, CO 2 , N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. / Ecosystems 2009,12(6):1037鈥?052. CrossRef
    26. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, Wu L, Gentry TJ, Yin Y, / et al.: GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. / ISME J 2010,4(9):1167鈥?179. CrossRef
    27. Berg IA, Kockelkorn D, Buckel W, Fuchs G: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. / Science 2007,318(5857):1782鈥?786. CrossRef
    28. Badger MR, Bek EJ: Multiple rubisco forms in proteobacteria: their functional significance in relation to CO 2 acquisition by the CBB cycle. / J Exp Bot 2008,59(7):1525鈥?541. CrossRef
    29. Hageman RV, Burris RH: Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. / Proc Natl Acad Sci USA 1978,75(6):2699鈥?702. CrossRef
    30. Zehr JP, Jenkins BD, Short SM, Steward GF: Nitrogenase gene diversity and microbial community structure: a cross-system comparison. / Environ Microbiol 2003,5(7):539鈥?54. CrossRef
    31. Raymond J, Siefert JL, Staples CR, Blankenship RE: The natural history of nitrogen fixation. / Mol Biol Evol 2004,21(3):541鈥?54. CrossRef
    32. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J: Nitrogen limitation constrains sustainability of ecosystem response to CO 2 . / Nature 2006,440(7086):922鈥?25. CrossRef
    33. Lee TD, Barrott SH, Reich PB: Photosynthetic responses of 13 grassland species across 11 years of free-air CO 2 enrichment is modest, consistent and independent of N supply. / Glob Chang Biol 2011,17(9):2893鈥?904. CrossRef
    34. Dijkstra FA, Hobbie SE, Reich PB, Knops JMH: Divergent effects of elevated CO 2 , N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. / Plant Soil 2005,272(1):41鈥?2. CrossRef
    35. Deng Y, He Z, Xu M, Qin Y, Van Nostrand JD, Wu L, Roe BA, Wiley G, Hobbie SE, Reich PB, / et al.: Elevated carbon dioxide alters the structure of soil microbial communities. / Appl Environ Microbiol 2012,78(8):2991鈥?995. CrossRef
    36. Reich PB: Elevated CO 2 reduces losses of plant diversity caused by nitrogen deposition. / Science 2009,326(5958):1399鈥?402. CrossRef
    37. Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X: Functional molecular ecological networks. / mBio 2010,1(4):e00169鈥?0. CrossRef
    38. Calvin M: Nobel prize for chemistry. / Nature 1961, 192:799.
    39. Evans MC, Buchanan BB, Arnon DI: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. / Proc Natl Acad Sci U S A 1966, 55:928鈥?34. CrossRef
    40. Herter S, Fuchs G, Bacher A, Eisenreich W: A bicyclic autotrophic CO 2 fixation pathway in chloroflexus aurantiacus. / J Biol Chem 2002,277(23):20277鈥?0283. CrossRef
    41. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, / et al.: Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris . / Nat Biotech 2004,22(1):55鈥?1. CrossRef
    42. Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP: Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO 2 . / Soil Biol Biochem 2009,41(1):54鈥?0. CrossRef
    43. Billings SA, Lichter J, Ziegler SE, Hungate BA, Richter DB: A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO 2 world. / Soil Biol Biochem 2010,42(4):665鈥?68. CrossRef
    44. Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW: Plant production and soil microorganisms in late-successional ecosystems: A continental-scale study. / Ecology 1994,75(8):2333鈥?347. CrossRef
    45. Marschner P, Yang CH, Lieberei R, Crowley DE: Soil and plant specific effects on bacterial community composition in the rhizosphere. / Soil Biol Biochem 2001,33(11):1437鈥?445. CrossRef
    46. He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J: Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO 2 . / Ecol Lett 2010,13(5):564鈥?75. CrossRef
    47. Lauber CL, Hamady M, Knight R, Fierer N: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. / Appl Environ Microbiol 2009,75(15):5111鈥?120. CrossRef
    48. Hill MO, Gauch HG: Deterended correspondence analysis, an improved ordination technique. / Vegetatio 1980, 42:47鈥?8. CrossRef
    49. Ramette A: Multivariate analyses in microbial ecology. / FEMS Microbiol Ecol 2007,62(2):142鈥?60. CrossRef
  • 作者单位:Meiying Xu (10) (9)
    Zhili He (10)
    Ye Deng (10)
    Liyou Wu (10)
    Joy D van Nostrand (10)
    Sarah E Hobbie (11)
    Peter B Reich (12)
    Jizhong Zhou (10) (13) (14)

    10. Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, USA
    9. State Key Laboratory of Applied Microbiology (Ministry鈥擥uangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou, China
    11. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, USA
    12. Department of Forest Resources, University of Minnesota, St. Paul, USA
    13. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
    14. Department of Environmental Science and Engineering, Tsinghua University, Beijing, China
  • ISSN:1471-2180
文摘
Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700