Snapshot of iron response in Shewanella oneidensis by gene network reconstruction
详细信息    查看全文
  • 作者:Yunfeng Yang (1)
    Daniel P Harris (1)
    Feng Luo (2)
    Wenlu Xiong (1)
    Marcin Joachimiak (3)
    Liyou Wu (1) (4)
    Paramvir Dehal (3)
    Janet Jacobsen (5)
    Zamin Yang (1)
    Anthony V Palumbo (1)
    Adam P Arkin (3) (6)
    Jizhong Zhou (1) (4)
  • 刊名:BMC Genomics
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:2309KB
  • 参考文献:1. McHugh JP, Rodriguez–Quinones F, Abdul–Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC: Global iron–dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. / J Biol Chem 2003,278(32):29478-9486. CrossRef
    2. Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J 3rd, Brandt CC, / et al.: Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. / Appl Environ Microbiol 2002,68(2):881-92. CrossRef
    3. Wan XF, Verberkmoes NC, McCue LA, Stanek D, Connelly H, Hauser LJ, Wu L, Liu X, Yan T, Leaphart A, / et al.: Transcriptomic and proteomic characterization of the Fur modulon in the metal–reducing bacterium Shewanella oneidensis. / J Bacteriol 2004,186(24):8385-400. CrossRef
    4. Andrews SC, Robinson AK, Rodriguez–Quinones F: Bacterial iron homeostasis. / FEMS Microbiol Rev 2003,27(2-):215-37. CrossRef
    5. Masse E, Arguin M: Ironing out the problem: new mechanisms of iron homeostasis. / Trends Biochem Sci 2005,30(8):462-68. CrossRef
    6. Danielli A, Roncarati D, Delany I, Chiarini V, Rappuoli R, Scarlato V: In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome–wide location analysis. / J Bacteriol 2006,188(13):4654-662. CrossRef
    7. Ernst FD, Homuth G, Stoof J, Mader U, Waidner B, Kuipers EJ, Kist M, Kusters JG, Bereswill S, van Vliet AH: Iron–responsive regulation of the Helicobacter pylori iron–cofactored superoxide dismutase SodB is mediated by Fur. / J Bacteriol 2005,187(11):3687-692. CrossRef
    8. Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM: Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. / Infect Immun 2005,73(12):8167-178. CrossRef
    9. Braun V, Braun M: Iron transport and signaling in Escherichia coli. / FEBS Lett 2002,529(1):78-5. CrossRef
    10. Masse E, Vanderpool CK, Gottesman S: Effect of RyhB small RNA on global iron use in Escherichia coli. / J Bacteriol 2005,187(20):6962-971. CrossRef
    11. Baichoo N, Helmann JD: Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. / J Bacteriol 2002,184(21):5826-832. CrossRef
    12. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, / et al.: Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. / Nat Biotechnol 2002,20(11):1118-123. CrossRef
    13. Bagg A, Neilands JB: Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. / Biochemistry 1987,26(17):5471-477. CrossRef
    14. de Lorenzo V, Giovannini F, Herrero M, Neilands JB: Metal ion regulation of gene expression. Fur repressor–operator interaction at the promoter region of the aerobactin system of pColV–K30. / J Mol Biol 1988,203(4):875-84. CrossRef
    15. Masse E, Gottesman S: A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. / Proc Natl Acad Sci USA 2002,99(7):4620-625. CrossRef
    16. Jacques JF, Jang S, Prevost K, Desnoyers G, Desmarais M, Imlay J, Masse E: RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. / Mol Microbiol 2006,62(4):1181-190. CrossRef
    17. Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J: Global transcriptome analysis of the heat shock response of Shewanella oneidensis. / J Bacteriol 2004,186(22):7796-803. CrossRef
    18. Meyer TE, Tsapin AI, Vandenberghe I, de Smet L, Frishman D, Nealson KH, Cusanovich MA, van Beeumen JJ: Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. / Omics 2004,8(1):57-7. CrossRef
    19. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, / et al.: Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. / Int J Syst Bacteriol 1999,49(Pt 2):705-24. CrossRef
    20. Chen YS, Liu YC, Yen MY, Wang JH, Wann SR, Cheng DL: Skin and soft–tissue manifestations of Shewanella putrefaciens infection. / Clin Infect Dis 1997,25(2):225-29. CrossRef
    21. Wyckoff EE, Mey AR, Payne SM: Iron acquisition in Vibrio cholerae. / Biometals 2007,20(3-):405-16. CrossRef
    22. Harvie DR, Vilchez S, Steggles JR, Ellar DJ: Bacillus cereus Fur regulates iron metabolism and is required for full virulence. / Microbiology 2005,151(Pt 2):569-77. CrossRef
    23. Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA: Identification of iron–activated and –repressed Fur–dependent genes by transcriptome analysis of Neisseria meningitidis group B. / Proc Natl Acad Sci USA 2003,100(16):9542-547. CrossRef
    24. Payne SM, Wyckoff EE, Murphy ER, Oglesby AG, Boulette ML, Davies NM: Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. / Biometals 2006,19(2):173-80. CrossRef
    25. Yang Y, Harris DP, Luo F, Wu L, Parsons AB, Palumbo AV, Zhou J: Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. / BMC Genomics 2008,9(Suppl 1):S11. CrossRef
    26. Abdul–Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC: Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. / J Bacteriol 1999,181(5):1415-428.
    27. Chourey K, Wei W, Wan XF, Thompson DK: Transcriptome analysis reveals response regulator SO2426–mediated gene expression in Shewanella oneidensis MR- under chromate challenge. / BMC Genomics 2008, 9:395. CrossRef
    28. Thompson W, Rouchka EC, Lawrence CE: Gibbs Recursive Sampler: finding transcription factor binding sites. / Nucleic Acids Res 2003,31(13):3580-585. CrossRef
    29. Bencheikh–Latmani R, Williams SM, Haucke L, Criddle CS, Wu L, Zhou J, Tebo BM: Global transcriptional profiling of Shewanella oneidensis MR- during Cr(VI) and U(VI) reduction. / Appl Environ Microbiol 2005,71(11):7453-460. CrossRef
    30. Cameron AD, Redfield RJ: Non–canonical CRP sites control competence regulons in Escherichia coli and many other gamma–proteobacteria. / Nucleic Acids Res 2006,34(20):6001-014. CrossRef
    31. Saffarini DA, Schultz R, Beliaev A: Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. / J Bacteriol 2003,185(12):3668-671. CrossRef
    32. Dougan DA, Mogk A, Bukau B: Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. / Cell Mol Life Sci 2002,59(10):1607-616. CrossRef
    33. Lindquist S, Craig EA: The heat–shock proteins. / Annu Rev Genet 1988, 22:631-77. CrossRef
    34. Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, Zhou J: Constructing gene co–expression networks and predicting functions of unknown genes by random matrix theory. / BMC Bioinformatics 2007,8(1):299. CrossRef
    35. Lovley DR, Phillips EJP: Organic matter mineralization with reduction of ferric iron in anaerobic sediments. / Appl Environ Microbiol 1986, 51:683-89.
    36. Saito T, Wormald MR, Williams RJ: Some structural features of the iron–uptake regulation protein. / Eur J Biochem 1991,197(1):29-8. CrossRef
    37. Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP: Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. / J Biol Chem 2003,278(32):29837-9855. CrossRef
    38. Busby S, Kolb A: The CAP modulon. / Regulation of gene expression in Escherichia coli / (Edited by: Lin EC, Lynch A). New York, NY: Chapman & Hall 1996, 255-79.
    39. Asad NR, Asad LM, Silva AB, Felzenszwalb I, Leitao AC: Hydrogen peroxide effects in Escherichia coli cells. / Acta Biochim Pol 1998,45(3):677-90.
    40. Brown SD, Martin M, Deshpande S, Seal S, Huang K, Alm E, Yang Y, Wu L, Yan T, Liu X, / et al.: Cellular response of Shewanella oneidensis to strontium stress. / Appl Environ Microbiol 2006,72(1):890-00. CrossRef
    41. Talaat AM, Howard ST, Hale Wt, Lyons R, Garner H, Johnston SA: Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. / Nucleic Acids Res 2002,30(20):e104. CrossRef
    42. Williams BA, Gwirtz RM, Wold BJ: Genomic DNA as a cohybridization standard for mammalian microarray measurements. / Nucleic Acids Res 2004,32(10):e81. CrossRef
    43. Yang Y, Zhu M, Wu L, Zhou J: Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference. / BMC Genomics 2008,9(Suppl 2):S5. CrossRef
    44. Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, Hazen TC, Arkin AP, Wall JD, Zhou JZ, / et al.: Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. / Appl Environ Microbiol 2006,72(8):5578-588. CrossRef
    45. Luo F, Zhong J, Yang Y, Scheuermann R, Zhou J: Application of Random Matrix Theory to Biological Networks. / Phys Letter A 2006,357(6):420-23. CrossRef
    46. Luo F, Zhong J, Yang Y, Zhou J: Application of random matrix theory to microarray data for discovering functional gene modules. / Phys Rev E Stat Nonlin Soft Matter Phys 2006,73(3 Pt 1):031924. CrossRef
    47. Zhong JX, Geisel T: Level fluctuations in quantum systems with multifractal eigenStates. / Physical Review 1999, E 59:4071-074.
    48. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. / Nat Rev Genet 2004,5(2):101-13. CrossRef
    49. Batagelj V, Mrvar A: Pajek -Analysis and Visualization of Large Networks. / Graph Drawing Software / (Edited by: Jünger M, Mutzel P). Springer, Berlin 2003, 77-03.
    50. Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. / Nucleic Acids Res 1990,18(20):6097-100. CrossRef
  • 作者单位:Yunfeng Yang (1)
    Daniel P Harris (1)
    Feng Luo (2)
    Wenlu Xiong (1)
    Marcin Joachimiak (3)
    Liyou Wu (1) (4)
    Paramvir Dehal (3)
    Janet Jacobsen (5)
    Zamin Yang (1)
    Anthony V Palumbo (1)
    Adam P Arkin (3) (6)
    Jizhong Zhou (1) (4)

    1. Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    2. School of Computing, Clemson University, 29634, Clemson, SC, USA
    3. Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
    4. Institute for Environmental Genomics, and Department of Botany and Microbiology, University of Oklahoma, 73019, Norman, OK, USA
    5. Computational Research Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
    6. Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
文摘
Background Iron homeostasis of Shewanella oneidensis, a γ-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusion Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a role in anaerobic energy metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700