The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem
详细信息    查看全文
  • 作者:Qichao Tu ; Xishu Zhou ; Zhili He ; Kai Xue ; Liyou Wu ; Peter Reich…
  • 关键词:nifH ; Soil diazotrophs ; Community structure ; Co ; occurrence patterns ; Elevated CO2
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:71
  • 期:3
  • 页码:604-615
  • 全文大小:1,268 KB
  • 参考文献:1.Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.​1007/​s10533-004-0370-0 CrossRef
    2.Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRef PubMed
    3.Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554. doi:10.​1093/​molbev/​msh047 CrossRef PubMed
    4.Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014: bau001.
    5.Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM, Zehr JP (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2‐fixing microorganisms in marine microbial mats. Environ Microbiol 8:1721–1735CrossRef PubMed
    6.Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173CrossRef PubMed
    7.Berthrong S, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80(10):3103–3112CrossRef PubMed PubMedCentral
    8.Collavino MM, Tripp HJ, Frank IE, Vidoz ML, Calderoli PA, Donato M, Zehr JP, Aguilar OM (2014) nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ Microbiol 16(10):3211–3223CrossRef PubMed
    9.Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921. doi:10.​1111/​j.​1462-2920.​2008.​01704.​x CrossRef PubMed
    10.Großkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MM, Lavik G, Schmitz RA, Wallace DW, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364CrossRef PubMed
    11.Hsu S-F, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136CrossRef PubMed
    12.Wang Q, Quensen JF, Fish JA, Kwon Lee T, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH Genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4. doi:10.​1128/​mBio.​00592-13
    13.Izquierdo J, Nüsslein K (2006) Distribution of extensive nifH gene diversity across physical soil microenvironments. Microb Ecol 51:441–452CrossRef PubMed
    14.Groszkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MMM, Lavik G, Schmitz RA, Wallace DWR, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364CrossRef
    15.Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRef
    16.Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799CrossRef PubMed
    17.Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191CrossRef PubMed
    18.Luo Y, Su BO, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Murtrie REM, Oren RAM, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739CrossRef
    19.Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925CrossRef PubMed
    20.Finzi AC, Moore DJ, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25CrossRef PubMed
    21.He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13:564–575CrossRef PubMed
    22.Xu M, He Z, Deng Y, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2013) Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiol 13:124CrossRef PubMed PubMedCentral
    23.Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351CrossRef PubMed PubMedCentral
    24.Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425CrossRef PubMed PubMedCentral
    25.Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. mBio 2. doi:10.​1128/​mBio.​00122-11
    26.Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606CrossRef PubMed PubMedCentral
    27.Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X (2010) Functional molecular ecological networks. mBio 1. doi:10.​1128/​mBio.​00169-10
    28.Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810CrossRef PubMed
    29.Lewin KF, Hendrey GR, Nagy J, LaMorte RL (1994) Design and application of a free-air carbon dioxide enrichment facility. Agric For Meteorol 70:15–29CrossRef
    30.Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMed PubMedCentral
    31.Ahn SJ, Costa J, Rettig Emanuel J (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre-or psost-PCR. Nucleic Acids Res 24:2623–2625CrossRef PubMed PubMedCentral
    32.Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103CrossRef PubMed
    33.Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods
    34.Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRef PubMed PubMedCentral
    35.Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRef PubMed PubMedCentral
    36.Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRef PubMed PubMedCentral
    37.Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650CrossRef PubMed PubMedCentral
    38.Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156CrossRef
    39.Hamady M, Lozupone C, Knight R (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27CrossRef PubMed PubMedCentral
    40.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRef PubMed PubMedCentral
    41.Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ, Bork P (2010) eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 38:9CrossRef
    42.Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinforma 13:113CrossRef
    43.Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J (2011) The thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genet 7:e1002318CrossRef PubMed PubMedCentral
    44.Lin L, Ji Y, Tu Q, Huang R, Teng L, Zeng X, Song H, Wang K, Zhou Q, Li Y (2013) Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter. Biotechnol Biofuels 6:103CrossRef PubMed PubMedCentral
    45.Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, Zhou J (2007) Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinforma 8:299CrossRef
    46.Zhou A, He Z, Redding‐Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q (2010) Hydrogen peroxide‐induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 12:2645–2657PubMed
    47.Yang Y, Harris DP, Luo F, Wu L, Parsons AB, Palumbo AV, Zhou J (2008) Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genomics 9:S11CrossRef
    48.Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432CrossRef PubMed PubMedCentral
    49.Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat Clim Chang 3:278–282CrossRef
    50.Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99CrossRef PubMed
    51.Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226CrossRef PubMed
    52.Drake JE, Gallet‐Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357CrossRef PubMed
    53.Law CS, Breitbarth E, Hoffmann LJ, McGraw CM, Langlois RJ, LaRoche J, Marriner A, Safi KA (2012) No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO2 in the South Pacific. Glob Chang Biol 18:3004–3014CrossRef
    54.Koike T, Izuta T, Lei T, Kitao M, Asanuma SI (1997) Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment. Springer, Netherlands, pp 887–888CrossRef
    55.Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7(7):e42149–e42149CrossRef PubMed PubMedCentral
    56.Mutch LA, Young JP (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444CrossRef PubMed
    57.Stacey G (1995) Bradyrhizobium japonicum nodulation genetics. FEMS Microbiol Lett 127:1–9CrossRef PubMed
    58.Parker MA (2012) Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21:1769–1778CrossRef PubMed
    59.Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRef PubMed
    60.Stanish LF, O’Neill SP, Gonzalez A, Legg TM, Knelman J, McKnight DM, Spaulding S, Nemergut DR (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131CrossRef PubMed
    61.Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959CrossRef PubMed PubMedCentral
    62.Müller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400–406CrossRef PubMed
    63.Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRef PubMed
    64.Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMed PubMedCentral
    65.Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51CrossRef
    66.Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass miscanthus. Int J Syst Evol Microbiol 51:17–26CrossRef PubMed
  • 作者单位:Qichao Tu (1) (2)
    Xishu Zhou (2) (3)
    Zhili He (3)
    Kai Xue (3)
    Liyou Wu (3)
    Peter Reich (4) (5)
    Sarah Hobbie (4)
    Jizhong Zhou (2) (6) (7)

    1. Department of Marine Sciences, Ocean College, Zhejiang University, Hangzhou, Zhejiang, 310058, China
    2. Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73019, USA
    3. School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
    4. Department of Forest Resources, University of Minnesota, St. Paul, MN, 55455, USA
    5. Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, 2753, NSW, Australia
    6. Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
    7. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700