Enhanced Anti-Tumor (Anti-Proliferation) Activity of Recombinant Human Interleukin-29 (IL-29) Mutants Using Site-Directed Mutagenesis Method
详细信息    查看全文
  • 作者:Yuan Lu ; Liyun Li ; Wei Chen ; Minchen Wu
  • 关键词:Human interleukin ; 29 ; Site ; directed mutagenesis ; Interferon ; α ; Anti ; proliferation activity ; Tumor cell
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:177
  • 期:5
  • 页码:1164-1175
  • 全文大小:1,508 KB
  • 参考文献:1.Kotenko, S. V., Gallagher, G., Baurin, V. V., Lewis-Antes, A., Shen, M., Shah, N. K., & Donnelly, R. P. (2003). IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology, 4, 69–77.CrossRef
    2.Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., Whitmore, T. E., & Klucher, K. M. (2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunology, 4, 63–68.CrossRef
    3.Onoguchi, K., Yoneyama, M., Takemura, A., Akira, S., Taniguchi, T., Namiki, H., & Fujita, T. (2007). Viral infections activate types I and III interferon genes through a common mechanism. Journal of Biological Chemistry, 282, 7576–7581.CrossRef
    4.Maher, S. G., Sheikh, F., Scarzello, A. J., Romero-Weaver, A. L., Baker, D. P., Donnelly, R. P., & Gamero, A. M. (2008). IFN-α and IFN-λ differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biology and Therapy, 7, 1109–1115.CrossRef
    5.Li, M., Liu, X., Zhou, Y., & Su, S. B. (2009). Interferon-λs: the modulators of antivirus, antitumor, and immune responses. Journal of Leukocyte Biology, 86, 23–32.CrossRef
    6.Kotenko, S. V. (2011). IFN-λs. Current Opinion in Immunology, 23, 583–590.CrossRef
    7.Gad, H. H., Dellgren, C., Hamming, O. J., Vends, S., Paludan, S. R., & Hartmann, R. (2009). Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. Journal of Biological Chemistry, 284, 20869–20875.CrossRef
    8.Miknis, Z. J., Magracheva, E., Li, W., Zdanov, A., Kotenko, S. V., & Wlodawer, A. (2010). Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1. Journal of Molecular Biology, 404, 650–664.CrossRef
    9.Wang, T., Tomic, S., Gabdoulline, R. R., & Wade, R. C. (2004). How optimal are the binding energetics of barnase and barstar? Biophysical Journal, 87, 1618–1630.CrossRef
    10.Xie, Z. H., & Shi, X. J. (2009). Fast and almost 100% efficiency site-directed mutagenesis by the megaprimer PCR method. Progress in Biochemistry and Biophysics, 36, 1490–1494.CrossRef
    11.Li, J. F., Tang, C. D., Shi, H. L., & Wu, M. C. (2011). Cloning and optimized expression of a neutral endoglucanase gene (ncel5A) from Volvariella volvacea WX32 in Pichia pastoris. Journal of Bioscience and Bioengineering, 111, 537–540.CrossRef
    12.Huang, Y. S., Chen, Z., Yang, Z. Y., Wang, T. Y., Zhou, L., Wu, J. B., & Zhou, L. F. (2007). Preparation and characterization of a potent, long-lasting recombinant human serum albumin-interferon-α2b fusion protein expressed in Pichia pastoris. European Journal of Pharmaceutics and Biopharmaceutics, 67, 301–308.CrossRef
    13.Lou, J., Chu, G., Zhou, G., Jiang, J., Huang, F., Xu, J., & He, J. (2010). Comparison between two kinds of cigarette smoke condensates (CSCs) of the cytogenotoxicity and protein expression in a human B-cell lymphoblastoid cell line using CCK-8 assay, comet assay and protein microarray. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 697, 55–59.CrossRef
    14.Tan, Z. B., Li, J. F., Wu, M. C., Tang, C. D., Zhang, H. M., & Wang, J. Q. (2011). High-level heterologous expression of an alkaline lipase gene from Penicillium cyclopium PG37 in Pichia pastoris. World Journal of Microbiology and Biotechnology, 27, 2767–2774.CrossRef
    15.Pestka, S., Krause, C. D., & Walter, M. R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunological Reviews, 202, 8–32.CrossRef
    16.Ank, N., West, H., & Paludan, S. R. (2006). IFN-λ: novel antiviral cytokines. Journal of Interferon & Cytokine Research, 26, 373–379.CrossRef
    17.Belardelli, F., Ferrantini, M., Proietti, E., & Kirkwood, J. M. (2002). Interferon-alpha in tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 119–134.CrossRef
    18.Ank, N., West, H., Bartholdy, C., Eriksson, K., Thomsen, A. R., & Paludan, S. R. (2006). Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. Journal of Virology, 80, 4501–4509.CrossRef
    19.Kamiya, N., Yonezawa, Y., Nakamura, H., & Higo, J. (2008). Protein-inhibitor flexible docking by a multicanonical sampling: native complex structure with the lowest free energy and a free-energy barrier distinguishing the native complex from the others. Proteins, 70, 41–53.CrossRef
  • 作者单位:Yuan Lu (2)
    Liyun Li (3)
    Wei Chen (1)
    Minchen Wu (1)

    2. School of Pharmaceutical Sciences, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China
    3. School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China
    1. Wuxi Medical School, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Interferon (IFN)-λ, also known as IL-28A, IL-28B, or IL-29, is a new type III IFN, which shares many functional characteristics with type I IFN (α/β). Currently, IFN-α is used in the treatment of certain forms of cancer with severe adverse effects. Some researches had stated that IFN-λs induced a similar but restricted growth inhibition of tumor cells relative to IFN-α; moreover, mutations of IFN-λs could strongly impact its biological properties. In this study, three hIL-29 mutants (K33R, R35K, and K33R/R35K) were generated by site-directed mutagenesis and efficiently expressed in Pichia pastoris GS115, which have considerable abilities to inhibit the growth of BEL-7402, HCT-8, and SGC-7901 tumor cells in vitro. The results showed that these mutants (K33R, R35K, and K33R/R35K) exhibited a significantly enhanced anti-proliferation activity against these tumor cells, compared with native hIL-29 in vitro. Further assay in vitro indicated that superior to K33R and R35K, K33R/R35K had a significant increase in anti-tumor activity compared with IFN-α2b, which suggested that the K33R/R35K could make improvement for the effectiveness of native hIL-29 in clinic and could be used as a potentially powerful candidate for cancer immunotherapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700